• Laser & Optoelectronics Progress
  • Vol. 56, Issue 13, 131102 (2019)
Xiu Jin, Xianzhi Zhu, Shaowen Li*, Wencai Wang, and Haijun Qi
Author Affiliations
  • School of Information & Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
  • show less
    DOI: 10.3788/LOP56.131102 Cite this Article Set citation alerts
    Xiu Jin, Xianzhi Zhu, Shaowen Li, Wencai Wang, Haijun Qi. Predicting Soil Available Phosphorus by Hyperspectral Regression Method Based on Gradient Boosting Decision Tree[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131102 Copy Citation Text show less
    References

    [1] Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 59, 364-372(1995). http://adsabs.harvard.edu/abs/1995SSASJ..59..364B

    [2] Wu Q, Yang Y H, Xu Z L et al. Applying local neural network and visible/near-infrared spectroscopy to estimating available nitrogen, phosphorus and potassium in soil[J]. Spectroscopy and Spectral Analysis, 34, 2102-2105(2014).

    [3] Li X Y, Fan P P, Hou G L et al. Rapid detection of soil nutrients based on visible and near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 37, 3562-3566(2017).

    [4] Shao Y N, He Y. Nitrogen, phosphorus, and potassium prediction in soils, using infrared spectroscopy[J]. Soil Research, 49, 166-172(2011). http://www.publish.csiro.au/?paper=SR10098

    [5] Jia S Y, Yang X L, Li G et al. Quantitatively determination of available phosphorus and available potassium in soil by near infrared spectroscopy combining with recursive partial least squares[J]. Spectroscopy and Spectral Analysis, 35, 2516-2520(2015).

    [6] Gatius F, Miralbés C, David C et al. Comparison of CCA and PLS to explore and model NIR data[J]. Chemometrics and Intelligent Laboratory Systems, 164, 76-82(2017). http://www.sciencedirect.com/science/article/pii/S0169743916305226

    [7] Kawamura K, Tsujimoto Y, Rabenarivo M et al. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar[J]. Remote Sensing, 9, 1081(2017). http://adsabs.harvard.edu/abs/2017RemS....9.1081K

    [8] Genisheva Z, Quintelas C, Mesquita D P et al. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)[J]. Food Chemistry, 246, 172-178(2018). http://europepmc.org/abstract/MED/29291836

    [9] Sarathjith M C, Das B S, Wani S P et al. Comparison of data mining approaches for estimating soil nutrient contents using diffuse reflectance spectroscopy[J]. Current Science, 110, 1031-1037(2016).

    [10] Zhang J J, Guo X, Zhao X M. Hyperspectral characteristics and inversion models of total phosphorus and available phosphorus in paddy fields in southern hilly China[J]. Jiangsu Agricultural Sciences, 44, 522-525(2016).

    [11] Qi H J, Li S W, Arnon K et al. Prediction method of soil available phosphorus using hyperspectral data based on PLS-BPNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 49, 166-172(2018).

    [12] Wang W C, Li S W, Qi H J et al. The difference analysis of soil available phosphors content imaging and non-imaging spectra prediction[J]. Jiangsu Journal of Agricultural Sciences, 34, 811-817(2018).

    [13] Fu Z L. A universal ensemble learning algorithm[J]. Journal of Computer Research and Development, 50, 861-872(2013).

    [14] Kaneko H, Funatsu K. Applicability domain based on ensemble learning in classification and regression analyses[J]. Journal of Chemical Information and Modeling, 54, 2469-2482(2014). http://www.ncbi.nlm.nih.gov/pubmed/25119661

    [15] Okujeni A, van der Linden S, Suess S et al. . Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 1640-1650(2017). http://ieeexplore.ieee.org/document/7792573/

    [16] Mesquita D P P, Gomes J P P, Souza Junior A H. Ensemble of efficient minimal learning machines for classification and regression[J]. Neural Processing Letters, 46, 751-766(2017). http://link.springer.com/article/10.1007/s11063-017-9587-5

    [17] Zheng M D, Xiong H G, Qiao J F et al. Remote sensing inversion of soil organic matter based on broad band and narrow band comprehensive spectral index[J]. Laser & Optoelectronics Progress, 55, 072801(2018).

    [18] Ying L N, Zhou W D. Comparative analysis of multiple chemometrics methods in application of laser-induced breakdown spectroscopy for quantitative analysis of soil elements[J]. Acta Optica Sinica, 38, 1214002(2018).

    [19] Sampaio P S, Soares A, Castanho A et al. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms[J]. Food Chemistry, 242, 196-204(2018). http://europepmc.org/abstract/MED/29037678

    [20] Zou T T, Wang Y, Song H L. Near infrared spectroscopy combined with support vector regression applied for rapid and nondestructive detection of adulterate goat milk powder[J]. Journal of Chinese Institute of Food Science and Technology, 17, 261-267(2017).

    [21] Ni W D, Nørgaard L, Mørup M. Non-linear calibration models for near infrared spectroscopy[J]. Analytica Chimica Acta, 813, 1-14(2014). http://www.ncbi.nlm.nih.gov/pubmed/24528654

    [22] Nie P C, Wu D, Yang Y et al. Fast determination of boiling time of yardlong bean using visible and near infrared spectroscopy and chemometrics[J]. Journal of Food Engineering, 109, 155-161(2012). http://www.sciencedirect.com/science/article/pii/S0260877411005127

    [23] Ting J A. D'Souza A, Vijayakumar S, et al. Efficient learning and feature selection in high-dimensional regression[J]. Neural Computation, 22, 831-886(2010).

    [24] Kalika D, Morton K D, Collins L M et al. Hyperbolic and PLSDA filter algorithms to detect buried threats in GPR data[J]. Proceedings of SPIE, 9072, 90720U(2014). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2050502

    [25] Jain A, Smarra F, Mangharam R. Data predictive control using regression trees and ensemble learning. [C]∥2017 IEEE 56th Annual Conference on Decision and Control (CDC), December 12-15, 2017, Melbourne, VIC, Australia. New York: IEEE, 4446-4451(2017).

    [26] Kaneko H. Automatic outlier sample detection based on regression analysis and repeated ensemble learning[J]. Chemometrics and Intelligent Laboratory Systems, 177, 74-82(2018). http://www.sciencedirect.com/science/article/pii/S0169743917305919

    [27] Kabir A, Ruiz C, Alvarez S A et al. Regression, classification and ensemble machine learning approaches to forecasting clinical outcomes in ischemic stroke[M]. ∥Peixoto N, Silveira M, Ali H, et al. Biomedical engineering systems and technologies. Cham: Springer, 881, 376-402(2018).

    [28] Alazzam I, Alsmadi I, Akour M. Software fault proneness prediction: a comparative study between bagging, boosting, and stacking ensemble and base learner methods[J]. International Journal of Data Analysis Techniques and Strategies, 9, 1-16(2017).

    [29] Li S F, Jia M Z, Dong D M. Fast measurement of sugar in fruits using near infrared spectroscopy combined with random forest algorithm[J]. Spectroscopy and Spectral Analysis, 38, 1766-1771(2018).

    [30] Ge X Y, Ding J L, Wang J Z et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning[J]. Acta Optica Sinica, 38, 1030001(2018).

    [31] Kong Q Q, Ding X Q, Gong H L. Application of improved random forest pruning algorithm in tobacco origin identification of near infrared spectrum[J]. Laser & Optoelectronics Progress, 55, 013006(2018).

    [32] Gao Y, Cui L J, Lei B et al. Estimating soil organic carbon content with visible-near-infrared (Vis-NIR) spectroscopy[J]. Applied Spectroscopy, 68, 712-722(2014). http://www.ncbi.nlm.nih.gov/pubmed/25014837

    [33] Chang C W, Laird D A, Mausbach M J et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 65, 480-490(2001). http://www.tandfonline.com/servlet/linkout?suffix=CIT0012&dbid=16&doi=10.1080%2F03650340.2017.1373185&key=10.2136%2Fsssaj2001.652480x

    [34] Shi Y F, Chang S P. A study of determining the available phosphorus in high orgnaic soils by means of NaHCO3 extraction, ammonium molybdate-tartaric emetic-ascrbic acid colorimetry[J]. Journal of Gansu Agricultural University, 19, 108-111(1984).

    [35] Claeys D D, Verstraelen T, Pauwels E et al. Conformational sampling of macrocyclic alkenes using a Kennard-Stone-based algorithm[J]. The Journal of Physical Chemistry A, 114, 6879-6887(2010). http://europepmc.org/abstract/MED/20527925

    [36] Liu G S, Guo H S, Pan T et al. Vis-NIR spectroscopic pattern recognition combined with SG smoothing applied to breed screening of transgenic sugarcane[J]. Spectroscopy and Spectral Analysis, 34, 2701-2706(2014).

    [37] Bayer A, Bachmann M, Müller A et al. A comparison of feature-based MLR and PLS regression techniques for the prediction of three soil constituents in a degraded South African ecosystem[J]. Applied and Environmental Soil Science, 2012, 971252(2012).

    [38] Rossel R A V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 158, 46-54(2010). http://www.cabdirect.org/abstracts/20103239570.html

    [39] Peng J, Zhang Y Z, Zhou Q et al. The progress on the relationship physics-chemistry properties with spectrum characteristic of the soil[J]. Chinese Journal of Soil Science, 40, 1204-1208(2009).

    [40] Ji W. Viscarra Rossel R A, Shi Z. Accounting for the effects of water and the environment on proximally sensed Vis-NIR soil spectra and their calibrations[J]. European Journal of Soil Science, 66, 555-565(2015).

    Xiu Jin, Xianzhi Zhu, Shaowen Li, Wencai Wang, Haijun Qi. Predicting Soil Available Phosphorus by Hyperspectral Regression Method Based on Gradient Boosting Decision Tree[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131102
    Download Citation