• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0217001 (2023)
Gaofeng Hou1,2 and Fengzhou Fang1,2,*
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
  • 2Laboratory of Micro/Nano Manufacturing Technology, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP212505 Cite this Article Set citation alerts
    Gaofeng Hou, Fengzhou Fang. Detection of Diabetic Fundus Disease Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0217001 Copy Citation Text show less
    References

    [1] Ting D S W, Cheung G C M, Franzco T Y W P. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review[J]. Clinical & Experimental Ophthalmology, 44, 260-277(2016).

    [2] Zhao Y B, Fang F Z. Measurement of the peripheral aberrations of human eyes: a comprehensive review[J]. Nanotechnology and Precision Engineering, 3, 53-68(2020).

    [3] Ren Z H, Fang F Z, Yan N et al. State of the art in defect detection based on machine vision[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 661-691(2022).

    [4] Alyoubi W L, Shalash W M, Abulkhair M F. Diabetic retinopathy detection through deep learning techniques: a review[J]. Informatics in Medicine Unlocked, 20, 100377(2020).

    [5] Samanta A, Saha A, Satapathy S C et al. Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset[J]. Pattern Recognition Letters, 135, 293-298(2020).

    [6] Qummar S, Khan F G, Shah S et al. A deep learning ensemble approach for diabetic retinopathy detection[J]. IEEE Access, 7, 150530-150539(2019).

    [7] Sayres R, Taly A, Rahimy E et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy[J]. Ophthalmology, 126, 552-564(2019).

    [8] Zago G T, Andreão R V, Dorizzi B et al. Diabetic retinopathy detection using red lesion localization and convolutional neural networks[J]. Computers in Biology and Medicine, 116, 103537(2020).

    [9] Wang H, Yuan G H, Zhao X G et al. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening[J]. Computer Methods and Programs in Biomedicine, 191, 105398(2020).

    [10] Wang J L, Luo J X, Liu B et al. Automatic detection of diabetic retinopathy based on R-FCN algorithm[J]. Computer Engineering and Applications, 56, 109-114(2020).

    [11] Meng F K, Yin W S, He J F. Detection method of hemorrhages of fundus image based on deep learning[J]. Journal of Shandong University (Natural Science), 55, 62-71(2020).

    [12] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).

    [13] Shenavarmasouleh F, Arabnia H R. DRDr: automatic masking of exudates and microaneurysms caused by diabetic retinopathy using mask R-CNN and transfer learning[M]. Arabnia H R, Deligiannidis L, Shouno H, et al. Advances in computer vision and computational biology. Transactions on computational science and computational intelligence, 307-318(2021).

    [14] Chen Q L, Sun X Z, Zhang N et al. Mini lesions detection on diabetic retinopathy images via large scale CNN features[C], 348-352(2019).

    [15] Li T, Gao Y Q, Wang K et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 501, 511-522(2019).

    [16] Sun Y C, Liu Y H, Zhang D F et al. Diagnosis method of diabetic retinopathy based on deep learning[J]. Laser & Optoelectronics Progress, 57, 241701(2020).

    [17] Durand F, Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images[J]. ACM Transactions on Graphics, 21, 257-266(2002).

    [18] Cai Z W, Vasconcelos N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1483-1498(2021).

    [19] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [20] Wang L, Chen C X, Fu X et al. Retinal vessel segmentation of prematurity infants based on FDMU-net[J]. Laser & Optoelectronics Progress, 58, 1417003(2021).

    [21] Li D X, Zhang Z. Improved U-net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).

    [22] Sun K, Xiao B, Liu D et al. Deep high-resolution representation learning for human pose estimation[C], 5693-5703(2019).

    [23] Lin T Y, Dollár P, Girshick R et al. Feature pyramid networks for object detection[C], 936-944(2017).

    [24] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    [25] Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767

    [26] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).