[1] SHI S, ZHANG Z Y, HE M Y, et al. Analysis of surface-plasmon-polaritons-sssisted interference imaging by using silver film with rough surface[J]. Optics Express, 2010, 18(10): 10685-10693.
[2] HE M Y, ZHANG Z Y, SHI S, et al. A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique[J]. Optics Express, 2010, 18(15): 15975-15980.
[3] WANG J Q, LIANG H M, NIU X Y, et al. Enhancing exposure depth for surface-plasmon polaritions interference nanolithography by waveguide modulation[J]. Journal of Applied Physics, 2010, 108(1): 014308-1-3.
[4] NIU X Y, QI Y M, WANG J Q, et al. Approach of enhancing exposure depth for evanescent wave interference lithography[J]. Microelectronic Engineering,2010, 87(5-8): 1168-1171.
[5] BETHE H A. Theory of diffraction by small holes[J]. Physical Review,1944, 66(7-8): 163-182.
[6] GRUPP D E, LEZEC H J, EBBESEN T W, et al. Crucial role of metal surface in enhanced transmission through subwavelength apertures[J]. Applied Physics Letters, 2000, 77(11): 1569-1571.
[7] CAO Q, LALANCE P. Negative role of surface plasmons in the transmission of metallic grating with very narrow slits[J]. Physical Review Letters, 2002, 88(5): 056403-1-4.
[8] DEGIRON A, LEZEC H J, YAMAMOTO N. Optical transmission properties of a single subwavelength aperture in a real metal[J]. Optics Communications, 2004, 239(1-3): 61-66.
[9] TAN W C, PREIST T W, SAMBLES R J. Resonant tunneling of light through thin metal films via strongly localized surface plasmons[J]. Physical Review B, 2000, 62(16):11134-11138.
[10] MARTIN M L, GARCIA V F J, LEZEC H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 2001, 86(6): 1114-1117.
[11] GARCIA N, NIETO V M. Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(5):490.