• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 2, 23001 (2022)
Rong Xiang1,2,*
Author Affiliations
  • 1State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
  • 2Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
  • show less
    DOI: 10.1088/2631-7990/ac5f11 Cite this Article
    Rong Xiang. Atomic precision manufacturing of carbon nanotube—a perspective[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 23001 Copy Citation Text show less
    References

    [1] Fang F Z, Zhang N, Guo D M, Ehmann K, Cheung B, Liu K and Yamamura K 2019 Towards atomic and close-to-atomic scale manufacturing Int. J. Extreme Manuf. 1 012001

    [2] Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 C60: buckminsterfullerene Nature 318 162-3

    [3] Iijima S 1991 Helical microtubules of graphitic carbon Nature 354 56-58

    [4] Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183-91

    [5] Arnold M S, Green A A, Hulvat J F, Stupp S I and Hersam M C 2006 Sorting carbon nanotubes by electronic structure using density differentiation Nat. Nanotechnol. 1 60-65

    [6] Tu X M, Manohar S, Jagota A and Zheng M 2009 DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes Nature 460 250-3

    [7] Liu H P, Nishide D, Tanaka T and Kataura H 2011 Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography Nat. Commun. 2 309

    [8] Yang X S et al 2021 Host-guest molecular interaction enabled separation of large-diameter semiconducting single-walled carbon nanotubes J. Am. Chem. Soc. 143 10120-30

    [9] Yang D H, Li L H, Wei X J, Wang Y C, Zhou W Y, Kataura H, Xie S S and Liu H P 2021 Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system Sci. Adv. 7 eabe0084

    [10] Wang P, Barnes B, Huang Z J, Wang Z Y, Zheng M and Wang Y H 2021 Beyond color: the new carbon ink Adv. Mater. 33 2005890

    [11] He X W et al 2016 Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes Nat. Nanotechnol. 11 633-8

    [12] Sun W et al 2020 Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches Science 368 874-7

    [13] Jinkins K R, Foradori S M, Saraswat V, Jacobberger R M, Dwyer J H, Gopalan P, Berson A and Arnold M S 2021 Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics Sci. Adv. 7 eabh0640

    [14] Liu L J et al 2020 Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics Science 368 850-6

    [15] Zhao M Y et al 2020 DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors Science 368 878-81

    [16] Yang F et al 2014 Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts Nature 510 522-4

    [17] Yang F, Wang X, Zhang D Q, Qi K, Yang J, Xu Z, Li M H, Zhao X L, Bai X D and Li Y 2015 Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts J. Am. Chem. Soc. 137 8688-91

    [18] Yang F et al 2017 Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes ACS Nano 11 186-93

    [19] Sanchez-Valencia J R, Dienel T, Groning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P and Fasel R 2014 Controlled synthesis of single-chirality carbon nanotubes Nature 512 61-64

    [20] Zhang S C et al 2017 Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts Nature 543 234-8

    [21] An H et al 2019 Atomic-scale structural identification and evolution of Co-W-C ternary SWCNT catalytic nanoparticles: high-resolution STEM imaging on SiO2 Sci. Adv. 5 eaat9459

    [22] Yang F et al 2021 Carbon-involved near-surface evolution of cobalt nanocatalysts: an in situ study CCS Chem. 3 154-67

    [23] Xie Y, Qian L, Lin D W, Yu Y, Wang S S and Zhang J 2021 Growth of homogeneous high-density horizontal SWNT arrays on sapphire through a magnesium-assisted catalyst anchoring strategy Angew. Chem., Int. Ed. 60 9330-3

    [24] Senga R, Pichler T and Suenaga K 2016 Electron spectroscopy of single quantum objects to directly correlate the local structure to their electronic transport and optical properties Nano Lett. 16 3661-7

    [25] Sato Y, Yanagi K, Miyata Y, Suenaga K, Kataura H and Iijima S 2008 Chiral-angle distribution for separated single-walled carbon nanotubes Nano Lett. 8 3151-4

    [26] Yao F R et al 2021 Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism Nat. Nanotechnol. 16 1073-8

    [27] Yang F, Wang M, Zhang D Q, Yang J, Zheng M and Li Y 2020 Chirality pure carbon nanotubes: growth, sorting, and characterization Chem. Rev. 120 2693-758

    [28] Wang Y, Wei F, Luo G H, Yu H and Gu G S 2002 The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor Chem. Phys. Lett. 364 568-72

    [29] Liao Y P, Jiang H, Wei N, Laiho P, Zhang Q, Khan S A and Kauppinen E I 2018 Direct synthesis of colorful single-walled carbon nanotube thin films J. Am. Chem. Soc. 140 9797-800

    [30] Hernandez A et al 2021 MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3 Results Phys. 25 104167

    [31] Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S P and Mitra S 2013 Carbon nanotube computer Nature 501 526-30

    [32] Hills G et al 2019 Modern microprocessor built from complementary carbon nanotube transistors Nature 572 595-602

    [33] Xiang R et al 2020 One-dimensional van der Waals heterostructures Science 367 537-42

    [34] Zheng Y J et al 2021 One-dimensional van der Waals heterostructures: growth mechanism and handedness correlation revealed by nondestructive TEM Proc. Natl Acad. Sci. USA 118 e2107295118