• Laser & Optoelectronics Progress
  • Vol. 51, Issue 12, 120002 (2014)
Ma Xiaoping*, Sun Jianfeng, Hou Peipei, Xu Qian..., Zhi Yanan and Liu Liren|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.120002 Cite this Article Set citation alerts
    Ma Xiaoping, Sun Jianfeng, Hou Peipei, Xu Qian, Zhi Yanan, Liu Liren. Research Progress on Overcoming the Atmospheric Turbulence Effect in Satellite-to-Ground Laser Communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002 Copy Citation Text show less
    References

    [1] Chan, Vincent W S. Space coherent optical communication systems-an introduction[J]. J Lightwave Technol, 1987, 5(4): 633-637.

    [2] V W Chan. Optical satellite networks[J]. J Lightwave Technol, 2003, 21(11): 2811-2827.

    [3] A Panahi, A A Kazemi. High speed laser communication network for satellite systems[C]. SPIE, 2011, 8026:80260L.

    [4] R G Marshalek, G S Mecherle, P Jordan. System-level comparison of optical and RF technologies for space-to-space and space-to-ground communication links circa 2000[C]. Photonics West′96, 1996. 134-145.

    [5] T Tolker-Nielsen, G Oppenhauser. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[C]. SPIE, 2002. 4635: 1-15.

    [6] T Tolker-Nielsen, J Guillen. SILEX: the first european optical communication terminal in orbit[J]. ESA bulletin, 1998, 96(1): 998.

    [7] Liu Liren. Satellite laser communication is reviewed[J]. Science, 2007, 59(3): 29-33.

    [8] Liu Liren. Laser communications in space I optical link and terminal technology[J]. Chinese J Lasers, 2007, 34(1): 3-20.

    [9] Liu Liren, Wang Lijuan, Luan Zhu, et al.. Mathematical and physical basis for pointing, acquisition and tracking testing of inter satellite laser communication terminals[J]. Acta Optica Sinica, 2006, 26(9): 1329-1334.

    [10] Li Xiaofeng. The Principle and Technology of the Satellite-to-Ground Laser Communication Links[M]. Beijing: National Defence Industry Press, 2007. 121-159.

    [11] Xia Yun. Performance Analysis for Space-to-ground Optical Communication System with Existence of Atmospheric Turbulence[D]. Hangzhou: Zhejiang University, 2007.

    [12] Miller, P Zieske. Characterization of atmospheric turbulence[C]. SPIE, 1976,0075:30-38.

    [13] J C Ricklin, F M Davidson. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. J Opt Soc Am A, 2002, 19(9): 1794-1802.

    [14] L C Andrews, R L Phillips. Laser Beam Propagation Through Random Media[M]. Bellingham: SPIE Press, 2005.

    [15] Wu Huiyun, Chen Jinbao, Sun Zhenhai. Analysis of beam propagation through a relay mirror system in turbulent atmosphere[J]. Chinese J Lasers, 2013, 40(2): 0213001.

    [16] L C Andrews, R L Phillips, R J Sasiela. Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects[J]. Opt Eng, 2006, 45(7): 076001.

    [17] J Recolons, L C Andrews, R L Phillips. Analysis of beam wander effects for a horizontal-path propagating Gaussianbeam wave: focused beam case[J]. Opt Engng, 2007, 46(8): 086002.

    [18] A Ishimaru. Wave Propagation and Scattering in Random Media[M]. New York: Academic Press, 1978.

    [19] G Wang. A new random-phase-screen time series simulation algorithm for dynamically atmospheric turbulence wavefront generator[C]. SPIE, 2006, 6027: 602716.

    [20] Rao Ruizhong. Light Propagation in the Turbulent Atmosphere[M]. Hefei:Anhui Science and Technology Press, 2005. 307-335.

    [21] Walter P Cole, Michael A Marciniak, Mitchell B Haeri. Atmospheric-turbulence-effects correction factors for the laser range equation[J]. Opt Engng, 2008, 47(12): 126001.

    [22] Jose Paulo G de Oliveira. Availability of free-space optical communication systems under influence of beam wandering and optical turbulence[C]. SPIE, 2009, 7324: 732406.

    [23] Z Sodnik, J P Armengol, R Czichy. Adaptive optics and ESA′s optical ground station[C]. SPIE, 2009, 7464: 746406.

    [24] R Fields, D Kozlowski, H Yura, et al.. 5.625 Gb/s bidirectional laser communications measurements between the NFIRE satellite and an optical ground station[C]. SPIE, 2011, 8184: 81840D.

    [25] R Tyson. Principles of Adaptive Optics[M]. Florida: CRC Press, 2010.

    [26] Devaney N, Dalimier E, Farrell T, et al.. Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors[J]. Appl Opt, 2008, 47(35): 6550-6562.

    [27] Wu Huiyun, Chen Jinbao, Sun Zhenhai. Analysis of beam propagation through a relay mirror system in turbulent atmosphere[J]. Chinese J Lasers, 2013, 40(2): 0213001.

    [28] R H Czichy, Z Sodnik, B Furch. Design of an optical ground station for in-orbit checkout of free-space laser communication payloads[C]. Photonics West′95, 1995. 26-37.

    [29] Cheng Qiang, Yan Feng, Xue Donglin, et al.. Wavefront error testing of off-axis three-mirror anastigmatic system using phase diversity technology[J]. Chinese J Lasers, 2012, 39(10): 1008001.

    [30] Tang Weijie, Fu Lei, Chen Shufen, et al.. Realization of measuring micro-vibration based on phase generated carrier modulation-demodulation method and interference analysis[J]. Chinese J Lasers, 2013, 40(2): 0214001.

    [31] R B Garreis. 90 degree optical hybrid for coherent receivers[C]. Munich′91 (Lasers′91), 1991. 210-219.

    [32] M Gregory, F Heine, H Kampfner, et al.. Inter-satellite and satellite-ground laser communication links based on homodyne BPSK[C]. SPIE, 2010, 7587: 75870E.

    [33] L Allen, M W Beijersbergen, R J C Spreeuw, et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(1): 8185.

    [34] Jian Wang, Jeng-Yuan Yang, Irfan M Fazal, et al.. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photon, 2012, 6(7): 488-496.

    [35] Ivan B. Djordjevic and Murat Arabaci. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication[J]. Opt Express, 2010, 18(24): 24722-24728.

    [36] Zhao S, Wang B, Zhou L, et al.. Turbulence mitigation scheme for optical communications using orbital angular momentum multiplexing based on channel coding and wavefront correction[J]. arXiv preprint arXiv: 1401. 7558. 2014.

    [37] A Gnauck, P J Winzer. Optical phase-shift-keyed transmission[J]. J Lightwave Technol, 2005, 23(1): 115-130.

    [38] Ma Xiaoping, Sun Jianfeng, Zhi Yanan, et al.. Research of DPSK modulation and self-differential homodyne coherent detection technology to overcome atmospheric turbulence effect in the satellite-to-ground laser communication[J]. Acta Optica Sinica, 2013, 33(7): 0706017.

    [39] Z Sodnik, M Sans. Extending EDRS to laser communication from space to ground[J]. Proc. of ICSOS, 2012. 13-2.

    [40] Dong Jing, Chen Rui, Li Xiaolong, et al.. Laser coherent detection of moving target based on micro-doppler effect[J]. Chinese J Lasers, 2012, 39(10): 1014001.

    [41] Zhi Ya′ nan, Sun Jianfeng, Dai Enwen, et al.. High-data rate differential phase shift keying receiver for satellite-toground optical communication link[C]. SPIE, 2012, 8517: 85170F.

    [42] Sun Jianfeng, Lu Wei, Wang Lijuan, et al.. High-data rate laser communication field experiment in the turbulence channel[C]. SPIE, 2012, 8517: 851713.

    [43] Liu Liren, Wang Lijuan, Luan Zhu, et al.. Mathematical and physical basis for pointing, acquisition and tracking testing of inter-satellite laser communication terminals[J]. Acta Optica Sinica, 2006, 26(9): 1329-1334.

    [44] Luan Zhu, Zhou Yu, Zhi Ya′ nan, et al.. An aperture-matched phase-compensated differential phase shift keying receiver with a 90° hybrid[C]. SPIE, 2011, 8162: 81620O.

    CLP Journals

    [1] Li Jiawei, Chen Weibiao. Bandwidth of Adaptive Optics System in Satellite-Ground Coherent Laser Communication[J]. Chinese Journal of Lasers, 2016, 43(8): 806003

    [2] Zhao Yi, Tong Shoufeng, Song Yansong, Chang shuai, Liu Yang. Research Progress of Optical Phase Locked Loop in Space Laser Communication[J]. Laser & Optoelectronics Progress, 2015, 52(8): 80002

    [3] Kong Yingxiu, Ke Xizheng, Yang Yuan. Influence Research of Atmospheric Turbulence on Space Coherent Optical Communications[J]. Laser & Optoelectronics Progress, 2015, 52(8): 80601

    [4] Zhang Zhen, Sun Jianfeng, Lu Bin, Li Jiawei, Zhu Ren, Hou Xia. Costas Optical Phase Lock Loop System Design in Inter-Orbit Coherent Laser Communication[J]. Chinese Journal of Lasers, 2015, 42(8): 805006

    [5] Shao Wenyi, Xian Hao. Reduced-Scale Experiment of Beam Propagation Under Multilayer Atmosphere Model Along Inhomogeneous Turbulent Path[J]. Chinese Journal of Lasers, 2016, 43(8): 805001

    [6] Li Xiaoming, Zhang Lizhong, Han Cheng, Liu Weida, Yang Xianwei, Jiang Huilin. Design of Optimization-Baffle for GEO Laser Communication[J]. Chinese Journal of Lasers, 2015, 42(9): 905006

    [7] XIE Xinxin, JIANG Lun, ZHANG Lei, TONG Shoufeng, LI Xiang. Spot Extraction Method ofCoarse Tracking Under Sky Background in Space Laser Communication[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(3): 236

    [8] Li Jiawei, Chen Weibiao. Bandwidth of Adaptive Optics System in Satellite-Ground Coherent Laser Communication[J]. Chinese Journal of Lasers, 2016, 43(8): 806003

    [9] Gao Jianqiu, Sun Jianfeng, Li Jiawei, Zhu Ren, Hou Peipei, Chen Weibiao. Coupling Method for Making Space Light into Single-Mode Fiber Based on Laser Nutation[J]. Chinese Journal of Lasers, 2016, 43(8): 801001

    Ma Xiaoping, Sun Jianfeng, Hou Peipei, Xu Qian, Zhi Yanan, Liu Liren. Research Progress on Overcoming the Atmospheric Turbulence Effect in Satellite-to-Ground Laser Communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002
    Download Citation