• Optics and Precision Engineering
  • Vol. 28, Issue 6, 1303 (2020)
ZHANG Chi, WU Xin*, and XIE Jian
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20202806.1303 Cite this Article
    ZHANG Chi, WU Xin, XIE Jian. Infrared polarization characteristics on sea surface based on bidirectional reflection distribution function[J]. Optics and Precision Engineering, 2020, 28(6): 1303 Copy Citation Text show less
    References

    [1] BJRKERT S, RENHORN I G E. Efficient polarimetric BRDF transformations[C]. Proc SPIE 9820, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVII, Baltimore, Maryland, USA, 2016, 9820: 98200D.

         BJRKERT S, RENHORN I G E. Efficient polarimetric BRDF transformations[C]. Proc SPIE 9820, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXVII, Baltimore, Maryland, USA, 2016, 9820: 98200D.

    [2] ZONIOS G, BASSUKAS I D, DIMOU A. Comparative evaluation of two simple diffuse reflectance models for biological tissue applications[J]. Applied Optics, 2008, 47 (27): 4965-4973.

         ZONIOS G, BASSUKAS I D, DIMOU A. Comparative evaluation of two simple diffuse reflectance models for biological tissue applications[J]. Applied Optics, 2008, 47 (27): 4965-4973.

    [3] HE X D, TORRANCE K E, SILLION F X, et al. A comprehensive physical model for light reflection [C]. 1991 Proceeding, Special Interest Group on Graphics and Interactive.

         HE X D, TORRANCE K E, SILLION F X, et al. A comprehensive physical model for light reflection [C]. 1991 Proceeding, Special Interest Group on Graphics and Interactive.

    [4] COOPER A W, CRITTENDEN E C Jr, MILNE E A, et al.. Mid- and far-infrared measurements of Sun glint from the sea surface[C]. Proc SPIE 1749, Optics of the Air-Sea Interface: Theory and Measurement, San Diego, CA, USA, 1992, 1749: 176-185.

         COOPER A W, CRITTENDEN E C Jr, MILNE E A, et al.. Mid- and far-infrared measurements of Sun glint from the sea surface[C]. Proc SPIE 1749, Optics of the Air-Sea Interface: Theory and Measurement, San Diego, CA, USA, 1992, 1749: 176-185.

    [5] GREGORIS D J, YU S K W, COOPER A W, et al.. Dual-band infrared polarization measurements of Sun glint from the sea surface[C]. Proc SPIE 1687, Characterization, Propagation, and Simulation of Sources and Backgrounds II, Orlando, FL, USA, 1992, 1687: 381-391.

         GREGORIS D J, YU S K W, COOPER A W, et al.. Dual-band infrared polarization measurements of Sun glint from the sea surface[C]. Proc SPIE 1687, Characterization, Propagation, and Simulation of Sources and Backgrounds II, Orlando, FL, USA, 1992, 1687: 381-391.

    [6] SHAW J A, MARSTON C. Polarized infrared emissivity for a rough water surface[J]. Optics Express, 2000, 7(11): 375-380.

         SHAW J A, MARSTON C. Polarized infrared emissivity for a rough water surface[J]. Optics Express, 2000, 7(11): 375-380.

    [7] CHANG P, FLITTON J C, HOPCRAFT K I, et al.. Importance of shadowing and multiple reflections in emission polarization[J]. Waves in Random Media, 2002, 12(1): 1-19.

         CHANG P, FLITTON J C, HOPCRAFT K I, et al.. Importance of shadowing and multiple reflections in emission polarization[J]. Waves in Random Media, 2002, 12(1): 1-19.

    [8] MEYERS J P. Modeling Polarimetric Imaging Using DIRSIG [D]. Michigan: Graduate University of the Michigan Technological, 2002.

         MEYERS J P. Modeling Polarimetric Imaging Using DIRSIG [D]. Michigan: Graduate University of the Michigan Technological, 2002.

    [9] LATGER J, CATHALA T, DOUCHIN N, et al.. Simulation of active and passive infrared images using the SE-WORKBENCH[C]. Proc SPIE 6543, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVIII, Orlando, Florida, USA, 2007, 6543: 654302.

         LATGER J, CATHALA T, DOUCHIN N, et al.. Simulation of active and passive infrared images using the SE-WORKBENCH[C]. Proc SPIE 6543, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVIII, Orlando, Florida, USA, 2007, 6543: 654302.

    [16] HE M, HU Y X, HUANG J P, et al.. Aerosol optical depth under “clear” sky conditions derived from sea surface reflection of lidar signals[J]. Optics Express, 2016, 24(26): A1618-A1634.

         HE M, HU Y X, HUANG J P, et al.. Aerosol optical depth under “clear” sky conditions derived from sea surface reflection of lidar signals[J]. Optics Express, 2016, 24(26): A1618-A1634.

    [17] ELFOUHAILY T, CHAPRON B, KATSAROS K, et al.. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15781-15796.

         ELFOUHAILY T, CHAPRON B, KATSAROS K, et al.. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15781-15796.

    [18] HE S, WANG X, XIA R Q, et al.. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering[J]. Applied Optics, 2018, 57(7): B150-B159.

         HE S, WANG X, XIA R Q, et al.. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering[J]. Applied Optics, 2018, 57(7): B150-B159.

    [20] MOBLEY C D. Polarized reflectance and transmittance properties of windblown sea surfaces[J]. Applied Optics, 2015, 54(15): 4828-4849.

         MOBLEY C D. Polarized reflectance and transmittance properties of windblown sea surfaces[J]. Applied Optics, 2015, 54(15): 4828-4849.

    [21] PRIEST R G, GERNER T A. Polarimetric BRDF in the microfacet model: theory and measurements[EB/OL]. Proceeding, the Millitary Sensing Symposia Specially Group Passive Sensors, 2000.

         PRIEST R G, GERNER T A. Polarimetric BRDF in the microfacet model: theory and measurements[EB/OL]. Proceeding, the Millitary Sensing Symposia Specially Group Passive Sensors, 2000.

    [24] DALIMONTE D, KAJIYAMA T. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface[J]. Optics Express, 2016, 24(8): 7922-7942.

         DALIMONTE D, KAJIYAMA T. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface[J]. Optics Express, 2016, 24(8): 7922-7942.

    [25] HYDE M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153.

         HYDE M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153.

    [26] TSANG L, KONG J A, SHIN R T. Theory of microwave remote sensing[EB/OL]. Wiley Interscience, 1985.

         TSANG L, KONG J A, SHIN R T. Theory of microwave remote sensing[EB/OL]. Wiley Interscience, 1985.

    [28] RESNICK A, PERSONS C, LINDQUIST G. Polarized emissivity and Kirchhoff′s law[J]. Applied Optics, 1999, 38(8): 1384-1387.

         RESNICK A, PERSONS C, LINDQUIST G. Polarized emissivity and Kirchhoff′s law[J]. Applied Optics, 1999, 38(8): 1384-1387.

    ZHANG Chi, WU Xin, XIE Jian. Infrared polarization characteristics on sea surface based on bidirectional reflection distribution function[J]. Optics and Precision Engineering, 2020, 28(6): 1303
    Download Citation