• International Journal of Extreme Manufacturing
  • Vol. 5, Issue 4, 42008 (2023)
1,2,3, 1,2,3, 1,2,3, 1,2,3..., 1,2,3, 1,2,3, 1,2,3, 1,2,3,* and 1,2,3|Show fewer author(s)
Author Affiliations
  • 1Shenzhen Key Laboratory of Advanced Energy Storage, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • 2SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • 3Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/acf172 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42008 Copy Citation Text show less
    References

    [1] Armand M and Tarascon J-M 2008 Building better batteries Nature 451 652–7

    [2] Dunn B, Kamath H K and Tarascon J-M 2011 Electrical energy storage for the grid: a battery of choices Science 334 928–35

    [3] Chang P, Mei H, Zhou S X, Dassios K G and Cheng L F 2019 3D printed electrochemical energy storage devices J. Mater. Chem. A 7 4230–58

    [4] Mackanic D G, Chang T-H, Huang Z J, Cui Y and Bao Z N 2020 Stretchable electrochemical energy storage devices Chem. Soc. Rev. 49 4466–95

    [5] LvZS,LiWL,YangL,LohXJandChenXD2019 Custom-made electrochemical energy storage devices ACS Energy Lett. 4 606–14

    [6] Zhao Y, Wang L, Zhou Y N, Liang Z, Tavajohi N, Li B H and Li T 2021 Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries Adv. Sci. 8 2003675

    [7] Liu X, Li Y, Xu X, Zhou L and Mai L 2021 Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances J. Energy Chem. 61 104–34

    [8] Kim H, Choi W, Yoon J, Um J H, Lee W, Kim J, Cabana J and Yoon W-S 2020 Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries Chem. Rev. 120 6934–76

    [9] Wu F X, Maier J and Yu Y 2020 Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries Chem. Soc. Rev. 49 1569–614

    [10] ZhengXY, HuangLQ,Ye XL,ZhangJX,MinFY, LuoW and Huang Y H 2021 Critical effects of electrolyte recipes for Li and Na metal batteries Chemistry 7 2312–46

    [11] Jin S, Jiang Y, Ji H X and Yu Y 2018 Advanced 3D current collectors for lithium-based batteries Adv. Mater. 30 1802014

    [12] Choi C, Ashby D S, Butts D M, DeBlock R H, Wei Q L, Lau J and Dunn B 2019 Achieving high energy density and high power density with pseudocapacitive materials Nat. Rev. Mater. 5 5–19

    [13] Yin F, Jin Q, Gao H, Zhang X T and Zhang Z G 2021 A strategy to achieve high loading and high energy density Li-S batteries J. Energy Chem. 53 340–6

    [14] Lee J, Zambrano B L, Woo J, Yoon K and Lee T 2020 Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications Adv. Mater. 32 1902532

    [15] Fu K et al 2016 Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries Adv. Mater. 28 2587–94

    [16] Pang Y K, Cao Y T, Chu Y H, Liu M H, Snyder K, MacKenzie D and Cao C Y 2020 Additive manufacturing of batteries Adv. Funct. Mater. 30 1906244

    [17] Yan J,HuangSZ, von LimY, XuTT, KongDZ,LiXJ, Yang H Y and Wang Y 2022 Direct-ink writing 3D printed energy storage devices: from material selectivity, design and optimization strategies to diverse applications Mater. Today 54 110–52

    [18] Zhu C et al 2017 3D printed functional nanomaterials for electrochemical energy storage Nano Today 15 107–20

    [19] Symes M D, Kitson P J, Yan J, Richmond C J, Cooper G J T, Bowman R W, Vilbrandt T and Cronin L 2012 Integrated 3D-printed reactionware for chemical synthesis and analysis Nat. Chem. 4 349–54

    [20] Highley C B, Rodell C B and Burdick J A 2015 Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels Adv. Mater. 27 5075–9

    [21] Down M P, Martínez-Peri.nán E, Foster C W, Lorenzo E, Smith G C and Banks C E 2019 Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures Adv. Energy Mater. 9 1803019

    [22] Ambrosi A and Pumera M 2016 3D-printing technologies for electrochemical applications Chem. Soc. Rev. 45 2740–55

    [23] Egorov V, Gulzar U, Zhang Y, Breen S and O’Dwyer C 2020 Evolution of 3D printing methods and materials for electrochemical energy storage Adv. Mater. 32 2000556

    [24] TianXC,JinJ,Yuan SQ,ChuaCK,Tor SBandZhouK 2017 Emerging 3D-printed electrochemical energy storage devices: a critical review Adv. Energy Mater. 7 1700127

    [25] Lyu Z et al 2021 Design and manufacture of 3D-printed batteries Joule 5 89–114

    [26] Lawes S, Sun Q, Lushington A, Xiao B W, Liu Y L and Sun X L 2017 Inkjet-printed silicon as high performance anodes for Li-ion batteries Nano Energy 36 313–21

    [27] LimGJH,LyuZY, ZhangX,KohJJ,ZhangY, HeCB, Adams S, Wang J and Ding J 2020 Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes J. Mater. Chem. A 8 9058–67

    [28] MaH,TianXC,WangT, TangK,LiuZX,HouSE,JinHY and Cao G Z 2021 Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable zinc-ion batteries Small 17 2100746

    [29] McOwen D W et al 2018 3D-printing electrolytes for solid-state batteries Adv. Mater. 30 1707132

    [30] Sun K, Wei T-S, Ahn B Y, Seo J Y, Dillon S J and Lewis J A 2013 3D printing of interdigitated Li-ion microbattery architectures Adv. Mater. 25 4539–43

    [31] Zekoll S et al 2018 Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries Energy Environ. Sci. 11 185–201

    [32] ZhouYH,XiaXS,LiuXP, HuangBQ,XiaoLR, Qian Q R and Chen Q H 2019 Preparation and rheological and mechanical properties of poly(butylene succinate)/talc composites for material extrusion additive manufacturing Macromol. Mater. Eng. 304 1900021

    [33] Zhang F, Wei M, Viswanathan V V, Swart B, Shao Y Y, Wu G and Zhou C 2017 3D printing technologies for electrochemical energy storage Nano Energy 40 418–31

    [34] Costa C M, Gon.alves R and Lanceros-Méndez S 2020 Recent advances and future challenges in printed batteries Energy Storage Mater. 28 216–34

    [35] Yu Y C, Chen M, Wang S T, Hill C, Joshi P, Kuruganti T and Hu A M 2018 Laser sintering of printed anodes for Al-air batteries J. Electrochem. Soc. 165 A584–92

    [36] Xu Q, Lv Y Z, Dong C B, Sreeprased T S, Tian A, Zhang H Z, Tang Y, Yu Z Qand Li N 2015 Three-dimensional micro/nanoscale architectures: fabrication and applications Nanoscale 7 10883–95

    [37] Wei M, Zhang F, Wang W, Alexandridis P, Zhou C and Wu G 2017 3D direct writing fabrication of electrodes for electrochemical storage devices J. Power Sources 354 134–47

    [38] Marschewski J, Brenner L, Ebejer N, Ruch P, Michel B and Poulikakos D 2017 3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries Energy Environ. Sci. 10 780–7

    [39] Ji D F, Zheng H Y, Zhang H, Liu W Q and Ding J W 2022 Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries Chem. Eng. J. 433 133815

    [40] AoSQ,GuoZS,SongYC,FangDNandBaoYH2022 Clog-free, low-cost, and uniform electrode inks for 3D printed lithium-ion batteries ACS Appl. Energy Mater. 5 6970–9

    [41] Wang J W et al 2018 Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach ACS Appl. Mater. Interfaces 10 39794–801

    [42] Arenas L F, Walsh F C and de León C P 2015 3D-printing of redox flow batteries for energy storage: a rapid prototype laboratory cell ECS J. Solid State Sci. Technol. 4 P3080–5

    [43] Maurel A, Courty M, Fleutot B, Tortajada H, Prashantha K, Armand M, Grugeon S, Panier S and Dupont L 2018 Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing Chem. Mater. 30 7484–93

    [44] Zhang M G, Mei H, Chang P and Cheng L F 2020 3D printing of structured electrodes for rechargeable batteries J. Mater. Chem. A 8 10670–94

    [45] Acord K A, Dupuy A D, Bertoli U S, Zheng B L, West W C, Chen Q N, Shapiro A A and Schoenung J M 2021 Morphology, microstructure, and phase states in selective laser sintered lithium ion battery cathodes J. Mater. Process. Technol. 288 116827

    [46] Mauriello J, Maury R, Guillaneuf Y and Gigmes D 2023 3D/4D printing of polyurethanes by vat photopolymerization Adv. Mater. Technol. 2300366

    [47] Rezaei B, Hansen T W and Keller S S 2022 Stereolithography-derived three-dimensional pyrolytic carbon/Mn3O4 nanostructures for free-standing hybrid supercapacitor electrodes ACS Appl. Nano Mater. 5 1808–19

    [48] Hilder M, Winther-Jensen B and Clark N B 2009 Paper-based, printed zinc-air battery J. Power Sources 194 1135–41

    [49] Kolchanov D S, Mitrofanov I, Kim A, Koshtyal Y, Rumyantsev A, Sergeeva E, Vinogradov A, Popovich A and Maximov M Y 2020 Inkjet printing of Li-rich cathode material for thin-film lithium-ion microbatteries Energy Technol. 8 1901086

    [50] Zub K, Stolze C, Rohland P, Stumpf S, Hoeppener S, Hager M D and Schubert U S 2022 Inkjet-printed microband electrodes for a cost-efficient state-of-charge monitoring in redox flow batteries Sens. Actuators B 369 132291

    [51] Bhar M, Dey A, Ghosh S, van Spronsen M A, Selvaraj V, Kaliprasad Y, Krishnamurthy S and Martha S K 2022 Plasma jet printing induced high-capacity graphite anodes for sustainable recycling of lithium-ion batteries Carbon 198 401–10

    [52] Percin K, Rommerskirchen A, Sengpiel R, Gendel Y and Wessling M 2018 3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes J. Power Sources 379 228–33

    [53] LaiCQ,LimGY, TaiKJ,LimKJD,Yu LH,KanaujiaPK and Seetoh P I 2022 Exceptional energy absorption characteristics and compressive resilience of functional carbon foams scalably and sustainably derived from additively manufactured kraft paper Addit. Manuf. 58 102992

    [54] ZhangGH,ZhangXN,LiuHZ,LiJH,ChenYQand Duan H G 2021 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries Adv. Energy Mater. 11 2003927

    [55] Wang Z X et al 2022 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity ACS Nano 16 9105–16

    [56] Wang H L, Yang Y, Liang Y Y, Cui L-F, Casalongue H S, Li Y G,Hong G S, Cui Y and Dai H J 2011 LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium-ion batteries Angew. Chem., Int. Ed. 50 7364–8

    [57] Airoldi L, Anselmi-Tamburini U, Vigani B, Rossi S, Mustarelli P and Quartarone E 2020 Additive manufacturing of aqueous-processed LiMn2O4 thick electrodes for high-energy-density lithium-ion batteries Batter. Supercaps 3 1040–50

    [58] CaoDX et al 2019 3D printed high-performance lithium metal microbatteries enabled by nanocellulose Adv. Mater. 31 1807313

    [59] Yang Y, Yuan W, Zhang X Q, Yuan Y H, Wang C, Ye Y T, Huang Y, Qiu Z Q and Tang Y 2020 Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries Appl. Energy 257 114002

    [60] ZhangW, LiuHZ,ZhangXN,LiXJ,ZhangGHandCaoP 2021 3D printed micro-electrochemical energy storage devices: from design to integration Adv. Funct. Mater. 31 2104909

    [61] ZengL,HeJ,YangCY, LuoD,Yu HB,HeHNand Zhang C H 2023 Direct 3D printing of stress-released Zn powder anodes toward flexible dendrite-free Zn batteries Energy Storage Mater. 54 469–77

    [62] Qian J, Chen Q Y, Hong M, Xie W Q, Jing S S, Bao Y H, Chen G, Pang Z Q, Hu L B and Li T 2022 Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose Mater. Today 54 18–26

    [63] Wang Y B et al 2017 3D-printed all-fiber Li-ion battery toward wearable energy storage Adv. Funct. Mater. 27 1703140

    [64] Hensleigh R M, Cui H C, Oakdale J S, Ye J C, Campbell P G, Duoss E B, Spadaccini C M, Zheng X Y and Worsley M A 2018 Additive manufacturing of complex micro-architected graphene aerogels Mater. Horiz. 5 1035–41

    [65] Cheng M et al 2018 Elevated-temperature 3D printing of hybrid solid-state electrolyte for Li-ion batteries Adv. Mater. 30 1800615

    [66] Delannoy P-E, Riou B, Brousse T, Le Bideau J, Guyomard D and Lestriez B 2015 Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries J. Power Sources 287 261–8

    [67] SunC,LiuSR,ShiXL,LaiC,LiangJJandChenYS2020 3D printing nanocomposite gel-based thick rlectrode rnabling both high areal capacity and rate performance for lithium-ion battery Chem. Eng. J. 381 122641

    [68] Praveen S, Santhoshkumar P, Joe Y C, Senthil C and Lee C W 2020 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices Appl. Mater. Today 20 100688

    [69] Li K et al 2020 3D MXene architectures for efficient energy storage and conversion Adv. Funct. Mater. 30 2000842

    [70] Fan ZD,JinJ,LiC,CaiJS,WeiCH,ShaoYL,ZouGF and Sun J Y 2021 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink ACS Nano 15 3098–107

    [71] Ma J X, Zheng S H, Chi L P, Liu Y, Zhang Y, Wang K and Wu Z-S 2022 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability Adv. Mater. 34 2205569

    [72] Fan ZD,WeiCH,Yu LH,XiaZ,CaiJS,TianZN, Zou G F, Dou S X and Sun J Y 2020 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors ACS Nano 14 867–76

    [73] Li J, Leu M C, Panat R and Park J 2017 A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing Mater. Des. 119 417–24

    [74] Kohlmeyer R R, Blake A J, Hardin J O, Carmona E A, Carpena-N′unez. J, Maruyama B, Berrigan J D, Huang H and Durstock M F 2016 Composite batteries: a simple yet universal approach to 3D printable lithium-ion battery electrodes J. Mater. Chem. A 4 16856–64

    [75] Ho C C, Evans J W and Wright P K 2010 Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte J. Micromech. Microeng. 20 104009

    [76] GaoXJ et al 2019 Toward a remarkable Li-S battery via 3D printing Nano Energy 56 595–603

    [77] Wu BK,MuYB,HeJF, LiM,LiZ,ChuYQ,LiYJand Zeng L 2023 In situ characterizations for aqueous rechargeable zinc batteries Carbon Neutralization vol 2 pp 310–38

    [78] HeHN,LuoD,ZengL,HeJ,LiXL,Yu HBand Zhang C H 2022 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery Sci. Bull. 67 1253–63

    [79] Pierre Mwizerwa J, Liu C Y, Xu K, Zhao N, Li Y D, Chen Z W and Shen J 2022 Three-dimensional printed lithium iron phosphate coated with magnesium oxide cathode with improved areal capacity and ultralong cycling stability for high performance lithium-ion batteries J. Colloid Interface Sci. 623 168–81

    [80] XuK,ZhaoN,LiYD,WangP, LiuZY, ChenZW, ShenJ and Liu C Y 2022 Design and 3D printing of interdigitated electrode structures for high-performance full lithium-ion battery Chin. J. Mech. Eng. 1 100053

    [81] HuJT et al 2016 3D-printed cathodes of LiMn1.xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery Adv. Energy Mater. 6 1600856

    [82] DingJW, ShenK,DuZG,LiBandYangSB2017 3D-printed hierarchical porous frameworks for sodium storage ACS Appl. Mater. Interfaces 9 41871–7

    [83] Wei T-S, Ahn B Y, Grotto J and Lewis J A 2018 3D printing of customized Li-ion batteries with thick electrodes Adv. Mater. 30 1703027–34

    [84] Cai J, Fan Z, Jin J, Shi Z, Dou S, Sun J and Liu Z 2020 Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity Nano Energy 75 104970–8

    [85] Lyu Z, Lim G, H J, Guo R, Kou Z, Wang T, Guan C, Ding J, Chen W and Wang J 2019 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries Adv. Funct. Mater. 29 1806658

    [86] QiaoY, LiuY, ChenCJ,XieH,Yao YG,HeSM, Ping W W, Liu B Y and Hu L B 2018 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries Adv. Funct. Mater. 28 1805899

    [87] Zhang J, Li X L, Fan S, Huang S Z, Yan D, Liu L, Valdivia Y, Alvarado P and Yang H Y 2020 3D-printed functional electrodes towards Zn-air batteries Mater. Today Energy 16 100407

    [88] RenYJ,MengFB,ZhangSW, PingB,LiH,YinBSand Ma T Y 2022 CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery Carbon Energy 4 446–57

    [89] Ahn D B, Kim W-Y, Lee K-H, Lee S-S, Kim S-H, Park S, Hong Y-K and Lee S-Y 2023 Enabling on-demand conformal Zn-ion batteries on non-developable surfaces Adv. Funct. Mater. 33 2211597

    [90] Liu C Y, Zhao N, Xu K, Li Y D, Mwizerwa J P, Shen J and Chen Z W 2022 High-performance LiFePO4 and SiO@C/graphite interdigitated full lithium-ion battery fabricated via low temperature direct write 3D printing Mater. Today Energy 29 101098

    [91] Zhang C, Shen K, Li B, Li S M and Yang S B 2018 Continuously 3D printed quantum dot-based electrodes for lithium storage with ultrahigh capacities J. Mater. Chem. A 6 19960–6

    [92] Ragones H, Menkin S, Kamir Y, Gladkikh A, Mukra T, Kosa G and Golodnitsky D 2018 Towards smart free form-factor 3D printable batteries Sustain. Energy Fuels 2 1542–9

    [93] LiuCY, QiuY, LiuYL,XuK,ZhaoN,LaoCS,ShenJand Chen Z W 2022 Novel 3D grid porous Li4Ti5O12 thick electrodes fabricated by 3D printing for high performance lithium-ion batteries J. Adv. Ceram. 11 295–307

    [94] LyuZY et al 2020 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability Energy Storage Mater. 24 336–42

    [95] Shen K, Li B and Yang S B 2020 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays Energy Storage Mater. 24 670–5

    [96] Foster C W, Down M P, Zhang Y, Ji X B, Rowley-Neale S J, Smith G C, Kelly P J and Banks C E 2017 3D printed graphene based energy storage devices Sci. Rep. 7 42233

    [97] Vasilaki E, Vernardou D, Kenanakis G, Vamvakaki M and Katsarakis N 2017 TiO2/WO3 photoactive bilayers in the UV-Vis light region Appl. Phys. A 123 231

    [98] Reyes C, Somogyi R, Niu S B, Cruz M A, Yang F C, Catenacci M J, Rhodes C P and Wiley B J 2018 Three-dimensional printing of a complete lithium ion battery with fused filament fabrication ACS Appl. Energy Mater. 1 5268–79

    [99] Pikul J H, Zhang H G, Cho J, Braun P V and King W P 2013 High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes Nat. Commun. 4 1732

    [100] Cohen E, Menkin S, Lifshits M, Kamir Y, Gladkich A, Kosa G and Golodnitsky D 2018 Novel rechargeable 3D-microbatteries on 3D-printed-polymer substrates: feasibility study Electrochim. Acta 265 690–701

    [101] Chen Q M, Xu R, He Z T, Zhao K J and Pan L 2017 Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography J. Electrochem. Soc. 164 A1852–7

    [102] Gu Y, Wu A D, Sohn H, Nicoletti C, Iqbal Z and Federici J F 2015 Fabrication of rechargeable lithium ion batteries using water-based inkjet printed cathodes J. Manuf. Process. 20 198–205

    [103] Fan Z Y, Shi J-W, Gao C, Gao G, Wang B R and Niu C M 2017 Rationally designed porous MnOx-FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3 ACS Appl. Mater. Interfaces 9 16117–27

    [104] Blake A J, Kohlmeyer R R, Hardin J O, Carmona E A, Maruyama B, Berrigan J D, Huang H and Durstock M F 2017 3D printable ceramic-polymer electrolytes for flexible high-performance Li-ion batteries with enhanced thermal stability Adv. Energy Mater. 7 1602920

    [105] Foroozan T, Soto F A, Yurkiv V, Sharifi-asl S, Deivanayagam R, Huang Z N, Rojaee R, Mashayek F, Balbuena P B and Shahbazian-yassar R 2018 Synergistic effect of graphene oxide for impeding the dendritic plating of Li Adv. Funct. Mater. 28 1705917

    [106] Lacey S D et al 2018 Extrusion-based 3D printing of hierarchically porous advanced battery electrodes Adv. Mater. 30 1705651

    [107] Zhou L, Ning W W, Wu C, Zhang D, Wei W F, Ma J M, Li C C and Chen L B 2018 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries Adv. Mater. Technol. 4 1800402

    [108] Ma T C and MacKenzie J D 2019 Fully printed, high energy density flexible zinc-air batteries based on solid polymer electrolytes and a hierarchical catalyst current collector Flex. Print. Electron. 4 015010

    [109] Brown E, Yan P L, Tekik H, Elangovan A, Wang J, Lin D and Li J 2019 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes Mater. Des. 170 107689

    [110] Zhao Y M, Zhou Q, Liu L, Xu J, Yan M M and Jiang Z Y 2006 A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries Electrochim. Acta 51 2639–45

    [111] Silverwood I P, Rogers S M, Callear S K, Parker S F and Catlow C R A 2016 Evidence for a surface gold hydride on a nanostructured gold catalyst Chem. Commun. 52 533–6

    [112] Ho C C, Murata K, Steingart D A, Evans J W and Wright P K 2009 A super ink jet printed zinc-silver 3D microbattery J. Micromech. Microeng. 19 094013

    [113] Budai J D, Liu W, Tischler J Z, Pan Z W, Norton D P, Larson B C, Yang W and Ice G E 2008 Polychromatic x-ray micro-and nanodiffraction for spatially-resolved structural studies Thin Solid Films 516 8013–21

    [114] XiaYQ,TangY, Yu X,Wan Y, ChenYZ,LuHGand Zheng S-Y 2017 Label-free virus capture and release by a microfluidic device integrated with porous silicon nanowire forest Small 13 1603135

    [115] Mauger A, Armand M, Julien C M and Zaghib K 2017 Challenges and issues facing lithium metal for solid-state rechargeable batteries J. Power Sources 353 333–42

    [116] Li N-W, Shi Y, Yin Y-X, Zeng X-X, Li J-Y, Li C-J, Wan L-J, Wen R and Guo Y-G 2018 A flexible solid electrolyte interphase layer for long-life lithium metal anodes Angew. Chem., Int. Ed. 57 1505–9

    [117] Xu R, Zhang X-Q, Cheng X-B, Peng H-J, Zhao C-Z, Yan C and Huang J-Q 2018 Artificial soft-rigid protective layer for dendrite-free lithium metal anode Adv. Funct. Mater. 28 1705838

    [118] Idrees M, Batool S, Cao J W, Javed M S, Xiong S F, Liu C Y and Chen Z W 2022 3D printed PC/SiOC@Zn hybrid composite as dendrite-free anode for Zn-ion battery Nano Energy 100 107505

    [119] Wu BK,GuoBB,ChenYZ,MuYB,QuHQ,LinM, Bai J M, Zhao T S and Zeng L 2023 High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays Energy Storage Mater. 54 75–84

    [120] Yan J et al 2020 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode J. Mater. Chem. A 8 19843–54

    [121] Luo W, Lin C-F, Zhao O, Noked M, Zhang Y, Rubloff G W and Hu L B 2017 Ultrathin surface coating enables the stable sodium metal anode Adv. Energy Mater. 7 1601526

    [122] ShiHT, PeiMF, WangS,Yao FT, XiaYH,XuZW, Liu S K, Shao R Q, Wang W and Liang S T 2023 3D-printed periodic hierarchical porous rGO/Ti3C2Tx architectures induced uniform lithium deposition for Li metal anodes Adv. Mater. Technol. 8 2200256

    [123] Sun C W, Liu J, Gong Y D, Wilkinson D P and Zhang J J 2017 Recent advances in all-solid-state rechargeable lithium batteries Nano Energy 33 363–86

    [124] Zhang C Y, Wang A X, Zhang J H, Guan X Z, Tang W J and Luo J Y 2018 2D materials for lithium/sodium metal anodes Adv. Energy Mater. 8 1802833

    [125] Vlad A, Singh N, Galande C and Ajayan P M 2015 Design considerations for unconventional electrochemical energy storage architectures Adv. Energy Mater. 5 1402115

    [126] Cao J, Zhang D D, Chanajaree R, Yue Y L, Zeng Z Y, Zhang X Y and Qin J Q 2022 Stabilizing zinc anode via a chelation and desolvation electrolyte additive Adv. Powder Mater. 1 100007

    [127] Fang G Z, Zhou J, Pan A Q and Liang S Q 2018 Recent advances in aqueous zinc-ion batteries ACS Energy Lett. 3 2480–501

    [128] Guo S, Qin L P, Zhang T S, Zhou M, Zhou J, Fang G Z and Liang S Q 2021 Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries Energy Storage Mater. 34 545–62

    [129] Yang Q et al 2020 Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes Adv. Mater. 32 2001755

    [130] MaH,TianXC,Fan JT, CaoWY, Yuan XL,HouSEand Jin H Y 2022 3D printing of solid-state zinc-ion microbatteries with ultrahigh capacity and high reversibility for wearable integration design J. Power Sources 550 232152

    [131] Liu H et al 2020 Controlling dendrite growth in solid-state electrolytes ACS Energy Lett. 5 833–43

    [132] Liu Z X et al 2021 Direct ink writing of Li1.3Al0.3Ti1.7PO43-based solid-state electrolytes with customized shapes and remarkable electrochemical behaviors Small 17 2002866

    [133] Pang Q, Liang X, Shyamsunder A and Nazar L F 2017 An in vivo formed solid electrolyte surface layer enables stable plating of Li metal Joule 1 871–86

    [134] Sun N et al 2019 Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy Angew. Chem., Int. Ed. 58 18647–53

    [135] Yang Q, Liang G J, Guo Y, Liu Z X, Yan B X, Wang D H, HuangZ D,Li X L, Fan J and Zhi C Y 2019 Do zinc dendrites exist in neutral zinc batteries: a develope electrohealing strategy to in situ rescue in-service batteries Adv. Mater. 31 1903778

    [136] Yang H Y et al 2022 A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel J. Mater. Chem. A 10 16842–52

    [137] HeYJ,ChenSJ,NieL,SunZT, Wu XSandLiuW2020 Stereolithography three-dimensional printing solid polymer electrolytes for all-solid-state lithium metal batteries Nano Lett. 20 7136–43

    [138] Ling W, Fu N, Yue J P, Zeng X-X, Ma Q, Deng Q, Xiao Y, Wan L-J, Guo Y-G and Wu X-W 2020 A flexible solid electrolyte with multilayer structure for sodium metal batteries Adv. Energy Mater. 10 1903966

    [139] ZengL,HeHN,ChenHY, LuoD,HeJandZhangCH 2022 3D printing architecting reservoir-integrated anode for dendrite-free, safe, and durable Zn batteries Adv. Energy Mater. 12 2103708

    [140] Mangani L R and Villevieille C 2020 Mechanical vs. chemical stability of sulphide-based solid-state batteries. Which one is the biggest challenge to tackle? Overview of solid-state batteries and hybrid solid state batteries J. Mater. Chem. A 8 10150–67

    [141] Tian X C and Xu B G 2021 3D printing for solid-state energy storage Small Methods 5 2100877

    [142] Stephen A, Bhoyate S, Cao P F, Advincula R, Dahotre N, Jiang Y J and Choi W 2022 3D-printed flexible anode for high-performance zinc ion battery MRS Commun. 12 894–901

    [143] Cheng M and Jiang Y 2021 3D-printed solid-state electrolytes for electrochemical energy storage devices J. Mater. Res. 36 4547–64

    [144] Deiner L J, Bezerra C A G, Howell T G and Powell A S 2019 Digital printing of solid-state lithium-ion batteries Adv. Eng. Mater. 21 1900737

    [145] Fan L L and Li X F 2018 Recent advances in effective protection of sodium metal anode Nano Energy 53 630–42

    [146] Nagaraju G, Tagliaferri S, Panagiotopoulos A, Och M, Quintin-Baxendale R and Mattevi C 2022 Durable Zn-ion hybrid capacitors using 3D printed carbon composites J. Mater. Chem. A 10 15665–76

    [147] Lu Y Y, Tu Z Y and Archer L A 2014 Stable lithium electrodeposition in liquid and nanoporous solid electrolytes Nat. Mater. 13 961–9

    [148] Liu Y, Qiao Y, Zhang Y, Yang Z, Gao T T, Kirsch D, Liu B Y, Song J W, Yang B and Hu L B 2018 3D printed separator for the thermal management of high-performance Li metal anodes Energy Storage Mater. 12 197–203

    [149] WangLG,LiJ,LuGL,LiWY, Tao QQ,ShiCH,JinHL, Chen G and Wang S 2020 Fundamentals of electrolytes for solid-state batteries: challenges and perspectives Front. Mater. 7 111

    [150] LiuPG,ZhangZY, HaoR,HuangYP, LiuWF, Tan YY, Li P L, Yan J and Liu K Y 2021 Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems Chem. Eng. J. 403 126425

    [151] Lin D C, Liu Y Y, Liang Z, Lee H-W, Sun J, Wang H T, Yan K, Xie J and Cui Y 2016 Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Nat. Nanotechnol. 11 626–32

    [152] Ragones H, Vinegrad A, Ardel G, Goor M, Kamir Y, Dorfman M M, Gladkikh A and Golodnitsky D 2020 On the road to a multi-coaxial-cable battery: development of a novel 3D-printed composite solid electrolyte J. Electrochem. Soc. 167 070503

    [153] Maurel A, Armand M, Grugeon S, Fleutot B, Davoisne C, Tortajada H, Courty M, Panier S and Dupont L 2020 Poly(ethylene oxide)-LiTFSI solid polymer electrolyte filaments for fused deposition modeling three-dimensional printing J. Electrochem. Soc. 167 070536

    [154] Liu Y, Zheng S H, Ma J X, Wang X, Zhang L Z, Das P, Wang K and Wu Z-S 2022 All 3D printing shape-conformable zinc ion hybrid capacitors with ultrahigh areal capacitance and improved cycle life Adv. Energy Mater. 12 2200341

    [155] Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y-M and Cui Y 2015 The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth Nat. Commun. 6 7436

    [156] Qi G A, Zeng Y and Chen J M 2022 Preparation of porous SnO2-based ceramics with lattice structure by DLP Ceram. Int. 48 14568–77

    [157] Wang S, Shi H T, Xia Y H, Liu D, Min C Y, Zeng M, Liang S R, Shao R Q, Wu XQandXu ZW 2022 A 3D-printed framework with a gradient distributed heterojunction and fast Li+ conductivity interfaces for high-rate lithium metal anodes J. Mater. Chem. A 10 24258–68

    [158] ShenK,CaoZJ,ShiYZ,ZhangYZ,LiBandYangSB 2021 3D printing lithium salt towards dendrite-free lithium anodes Energy Storage Mater. 35 108–13

    [159] Chen T, Wang Y N, Yang Y, Huang F, Zhu M K, Ang B T W and Xue J M 2021 Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries Adv. Funct. Mater. 31 2101607

    [160] Zhou S, Usman I, Wang Y J and Pan A Q 2021 3D printing for rechargeable lithium metal batteries Energy Storage Mater. 38 141–56

    [161] Zhang Y et al 2017 High-capacity, low-tortuosity, and channel-guided lithium metal anode Proc. Natl Acad. Sci. USA 114 3584–9

    [162] Wang C H, Kim J T, Wang C S and Sun X L 2023 Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells Adv. Mater. 35 2209074

    [163] Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A and Balsara N P 2014 Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes Nat. Mater. 13 69–73

    [164] He P and Huang J X 2021 Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode ACS Energy Lett. 6 1990–5

    [165] Blachowicz T and Ehrmann A 2020 3D printed MEMS technology-recent developments and applications Micromachines 11 434

    [166] NingHL,PikulJH,ZhangRY, LiXJ,XuS,WangJJ, Rogers J A, King W P and Braun P V 2015 Holo-graphic patterning of high-performance on-chip 3D lithium-ion microbatteries Proc. Natl Acad. Sci. USA 112 6573–8

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. 3D printing critical materials for rechargeable batteries: from materials, design and optimization strategies to applications[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 42008
    Download Citation