Hao Wan, Lei Lei, Rui Li, Wei Chen, Yiqing Shi. Cloud Detection in Landsat8 OLI Remote Sensing Image with Dual Attention Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(14): 1428004

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 60, Issue 14, 1428004 (2023)

Fig. 1. Structure of ResNet model

Fig. 2. Improved densely connected modules

Fig. 3. Conversion module

Fig. 4. Bottleneck structure. (a) Traditional bottleneck structure; (b) improved bottleneck structure

Fig. 5. Channel attention module

Fig. 6. Location attention module

Fig. 7. NLNet module structure

Fig. 8. Global context modeling module

Fig. 9. Atrous convolution module

Fig. 10. Densely connected network incorporating attention mechanism

Fig. 11. Ratio of image blocks covered by thick and thin clouds in different datasets

Fig. 12. Detection results of thin and thick clouds over land and coastal areas. (a) Original composite image (land); (b) cloud detection results of proposed algorithm (land); (c) original composite image (ocean); (d) cloud detection results of proposed algorithm (ocean)

Fig. 13. Detection results of different cloud detection methods in scenario 1. (a) Original composite image; (b) real image of the ground; (c) F-CNN algorithm; (d) proposed algorithm+no multi-scale; (e) RF algorithm; (f) SVM algorithm; (g) proposed algorithm; (h) Fmask algorithm

Fig. 14. Detection results of different cloud detection methods in scenario 2. (a) Original composite image; (b) real image of the ground; (c) F-CNN algorithm; (d) proposed algorithm+no multi-scale; (e) RF algorithm; (f) SVM algorithm; (g) proposed algorithm; (h) Fmask algorithm

Fig. 15. Detection results of different cloud detection methods in scenario 3. (a) Original composite image; (b) real image of the ground; (c) F-CNN algorithm; (d) proposed algorithm+no multi-scale; (e) RF algorithm; (f) SVM algorithm; (g) proposed algorithm; (h) Fmask algorithm

Fig. 16. Test datasets cloud detection accuracy distribution map. (a) Comparison with F-CNN model; (b) comparison with self-contrast model; (c) comparison with RF model; (d) comparison with SVM model

Fig. 17. RR distribution of cloud test datasets

Fig. 18. ER distribution of cloud test datasets

Fig. 19. FAR distribution of cloud test dataset

Fig. 20. RER distribution of cloud test datasets
|
Table 1. Image distribution of cloud coverage in train and test datasets
|
Table 2. Detection performance of different methods for thick and thin clouds
|
Table 3. Full cloud detection performance of different methods
|
Table 4. Ablation experiment results

Set citation alerts for the article
Please enter your email address