[1] Ngo T D, Kashani A, Imbalzano G, Nguyen K T Q and Hui D 2018 Additive manufacturing (3D printing): a review of materials, methods, applications and challenges Composites B 143 172–96
[2] Shahrubudin N, Lee T C and Ramlan R 2019 An overview on 3D printing technology: technological, materials, and applications Proc. Manuf. 35 1286–96
[3] Weller C, Kleer R and Piller F T 2015 Economic implications of 3D printing: market structure models in light of additive manufacturing revisited Int. J. Prod. Econ. 164 43–56
[4] Nikitakos N, Dagkinis I, Papachristos D, Georgantis G and Kostidi E 2020 Economics in 3D printing 3D Printing: Applications in Medicine and Surgery vol 1 (Amsterdam: Elsevier) pp 85–95
[5] Bhushan B and Caspers M 2017 An overview of additive manufacturing (3D printing) for microfabrication Microsyst. Technol. 23 1117–24
[6] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extreme Manuf. 2 022004
[7] Mohamed O A, Masood S H and Bhowmik J L 2015 Optimization of fused deposition modeling process parameters: a review of current research and future prospects Adv. Manuf. 3 42–53
[8] Kristiawan R B, Imaduddin F, Ariawan D, Ubaidillah and Arifin Z 2021 A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters Open Eng. 11 639–49
[9] Lan P T, Chou S Y, Chen L L and Gemmill D 1997 Determining fabrication orientations for rapid prototyping with stereolithography apparatus Comput. Aided Des. 29 53–62
[10] Niesler F and Hermatschweiler M 2015 Two-photon polymerization—a versatile microfabrication tool Laser Tech. J. 12 44–47
[11] Dehaeck S, Scheid B and Lambert P 2018 Adaptive stitching for meso-scale printing with two-photon lithography Addit. Manuf. 21 589–97
[12] Pagac M, Hajnys J, Ma Q P, Jancar L, Jansa J, Stefek P and Mesicek J 2021 A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing Polymers 13 598
[13] Jiang Z, Diggle B, Tan M L, Viktorova J, Bennett C W and Connal L A 2020 Extrusion 3D printing of polymeric materials with advanced properties Adv. Sci. 7 2001379
[14] Kirchmajer D M, Gorkin I I I R and Panhuis M I H 2015 An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing J. Mater. Chem. B 3 4105–17
[15] Jang J, Schatz G C and Ratner M A 2003 Capillary force on a nanoscale tip in dip-pen nanolithography Phys. Rev. Lett. 90 156104
[16] Huck W T S 2007 Self-assembly meets nanofabrication: recent developments in microcontact printing and dip-pen nanolithography Angew. Chem., Int. Ed. 46 2754–7
[17] Kim J T, Seol S K, Pyo J, Lee J S, Je J H and Margaritondo G 2011 Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization Adv. Mater. 23 1968–70
[18] Hengsteler J, Mandal B, van Nisselroy C, Lau G P S, Schlotter T, Zambelli T and Momotenko D 2021 Bringing electrochemical three-dimensional printing to the nanoscale Nano Lett. 21 9093–101
[19] Fu K, Yao Y G, Dai J Q and Hu L B 2017 Progress in 3D printing of carbon materials for energy-related applications Adv. Mater. 29 1603486
[20] Chen M J et al 2019 3D nanoprinting of perovskites Adv. Mater. 31 1904073
[21] Liu Y et al 2022 Meniscus-guided 3D microprinting of pure metal-organic frameworks with high gas-uptake performance ACS Appl. Mater. Interfaces 14 7184–91
[22] Suryavanshi A P, Hu J and Yu M F 2008 Meniscus-controlled continuous fabrication of arrays and rolls of extremely long micro-and nano-fibers Adv. Mater. 20 793–6
[23] SeolSK,KimD,LeeS,KimJH,ChangWSandKimJT 2015 Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures Small 11 3896–902
[24] Kim J H, Park S, Ahn J, Pyo J, Kim H, Kim N, Jung I D and Seol S K 2023 meniscus-guided micro-printing of Prussian blue for smart electrochromic display Adv. Sci. 10 2205588
[25] Lee S, Wajahat M, Kim J H, Pyo J, Chang W S, Cho S H, Kim J T and Seol S K 2019 Electroless deposition-assisted 3D printing of micro circuitries for structural electronics ACS Appl. Mater. Interfaces 11 7123–30
[26] ChenMJ,XuZY, KimJH,SeolSKandKimJT2018 Meniscus-on-demand parallel 3D nanoprinting ACS Nano 12 4172–7
[27] Ladd C, So J H, Muth J and Dickey M D 2013 3D printing of free standing liquid metal microstructures Adv. Mater. 25 5081–5
[28] Neumann T V and Dickey M D 2020 Liquid metal direct write and 3D printing: a review Adv. Mater. Technol. 5 2000070
[29] LeeGH,LeeYR,KimH,Kwon DA,KimH, YangCQ, Choi S Q, Park S, Jeong J W and Park S 2022 Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics Nat. Commun. 13 2643
[30] Hu J and Yu M F 2010 Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds Science 329 313–6
[31] Ghasemi H and Ward C A 2010 Sessile-water-droplet contact angle dependence on adsorption at the solid-liquid interface J. Phys. Chem. C 114 5088–100
[32] KimJH,ChangWS,KimD,YangJR,HanJT, LeeGW, Kim J T and Seol S K 2015 3D printing of reduced graphene oxide nanowires Adv. Mater. 27 157–61
[33] LeeJ,LeeP, LeeH,LeeD,LeeSSandKo SH2012Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel Nanoscale 4 6408–14
[34] Zhang Y X and Wang Y H 2017 Nonlinear optical properties of metal nanoparticles: a review RSC Adv. 7 45129–44
[35] Kochuveedu S T, Jang Y H and Kim D H 2013 A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications Chem. Soc. Rev. 42 8467–93
[36] Suarez F, Parekh D P, Ladd C, Vashaee D, Dickey M D and .ztürk M C 2017 Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics Appl. Energy 202 736–45
[37] King S W 2015 Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects ECS J. Solid State Sci. Technol. 4 N3029–47
[38] Reiser A, Lindén M, Rohner P, Marchand A, Galinski H, Sologubenko A S, Wheeler J M, Zenobi R, Poulikakos D and Spolenak R 2019 Multi-metal electrohydrodynamic redox 3D printing at the submicron scale Nat. Commun. 10 1853
[39] Schneider J, Rohner P, Thureja D, Schmid M, Galliker P and Poulikakos D 2016 Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes Adv. Funct. Mater. 26 833–40
[40] Zhang J Z and Noguez C 2008 Plasmonic optical properties and applications of metal nanostructures Plasmonics 3 127–50
[41] Sosa I O, Noguez C and Barrera R G 2003 Optical properties of metal nanoparticles with arbitrary shapes J. Phys. Chem. B 107 6269–75
[42] Suryavanshi A P and Yu M F 2006 Probe-based electrochemical fabrication of freestanding Cu nanowire array Appl. Phys. Lett. 88 083103
[43] Hengsteler J, Lau G P S, Zambelli T and Momotenko D 2022 Electrochemical 3D micro-and nanoprinting: current state and future perspective Electrochem. Sci. Adv. 2 e2100123
[44] Morsali S, Daryadel S, Zhou Z, Behroozfar A, Baniasadi M, Moreno S, Qian D and Minary-Jolandan M 2017 Multi-physics simulation of metal printing at micro/nanoscale using meniscus-confined electrodeposition: effect of nozzle speed and diameter J. Appl. Phys. 121 214305
[45] ZhangXY, ZhangYF, LiYY, LeiY, LiZX,SunAH, Xu G J,Yu M FandGuo J J 2019 Bipolar electrochemistry regulation for dynamic meniscus confined electrodeposition of copper micro-structures by a double-anode system J. Electrochem. Soc. 166 D676–82
[46] YiZR,LeiY, ZhangXY, ChenYN,GuoJJ,XuGJ, Yu M F and Cui P 2017 Ultralow flexural properties of copper microhelices fabricated via electrodeposition-based three-dimensional direct-writing technology Nanoscale 9 12524–32
[47] NieNW et al 2022 Direct writing of shape-gradient magnetic alloy microwire arrays with meniscus-confined electrodeposition process Adv. Mater. Technol. 7 2200024
[48] Wang Y T, Xiong X, Ju B F and Chen Y L 2022 Voxelated meniscus-confined electrodeposition of 3D metallic microstructures Int. J. Mach. Tools Manuf. 174 103850
[49] Suryavanshi A P and Yu M F 2007 Electrochemical fountain pen nanofabrication of vertically grown platinum nanowires Nanotechnology 18 105305
[50] LeiY, ZhangXY, XuDD,Yu MF, YiZR,LiZX, Sun A H,Xu G J,CuiP and Guo J J 2018Dynamic “scanning-mode” meniscus confined electrodepositing and micropatterning of individually addressable ultraconductive copper line arrays J. Phys. Chem. Lett. 9 2380–7
[51] Lee S, Kim J H, Wajahat M, Jeong H, Chang W S, Cho S H, Kim J T and Seol S K 2017 Three-dimensional printing of silver microarchitectures using Newtonian nanoparticle inks ACS Appl. Mater. Interfaces 9 18918–24
[52] KimWG,DevarajV, YangY, LeeJM,KimJT, OhJWand Rho J 2022 Three-dimensional plasmonic nanoclusters driven by co-assembly of thermo-plasmonic nanoparticles and colloidal quantum dots Nanoscale 14 16450–7
[53] Kim W-G et al 2022 Three-dimensional plasmonic nanocluster-driven light–matter interaction for photoluminescence enhancement and picomolar-level biosensing Nano Lett. 22 4702–11
[54] Wang C F, Wang C H, Huang Z L and Xu S 2018 Materials and structures toward soft electronics Adv. Mater. 30 1801368
[55] Nezakati T, Seifalian A, Tan A and Seifalian A M 2018 Conductive polymers: opportunities and challenges in biomedical applications Chem. Rev. 118 6766–843
[56] Kim J, Lee J, You J, Park M S, Hossain M S A, Yamauchi Y and Kim J H 2016 Conductive polymers for next-generation energy storage systems: recent pogress and new functions Mater. Horiz. 3 517–35
[57] Liu H et al 2018 Electrically conductive polymer composites for smart flexible strain sensors: a critical review J. Mater. Chem. C 6 12121–41
[58] Zhang Q, Zhang Y N, Wan Y, Carvalho W, Hu L and Serpe M J 2021 Stimuli-responsive polymers for sensing and reacting to environmental conditions Prog. Polym. Sci. 116 101386
[59] Aydemir N, Parcell J, Laslau C, Nieuwoudt M, Williams D E and Travas-Sejdic J 2013 Direct writing of conducting polymers Macromol. Rapid Commun. 34 1296–300
[60] Kim J T, Pyo J, Rho J, Ahn J H, Je J H and Margaritondo G 2012 Three-dimensional writing of highly stretchable organic nanowires ACS Macro Lett. 1 375–9
[61] Zhang P K, Aydemir N, Alkaisi M, Williams D E and Travas-Sejdic J 2018 Direct writing and characterization of three-dimensional conducting polymer PEDOT arrays ACS Appl. Mater. Interfaces 10 11888–95
[62] McKelvey K, O’Connell M A and Unwin P R 2013 Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cellmicroscopy (SECCM) Chem. Commun. 49 2986–8
[63] Pyo J, Kim J T, Lee J, Yoo J and Je J H 2016 3D printed nanophotonic waveguides Adv. Opt. Mater. 4 1190–5
[64] Hel′u M A B and Liu L 2021 Rational shaping of hydrogel by electrodeposition under fluid mechanics for electrochemical writing on complex shaped surfaces at microscale Chem. Eng. J. 416 129029
[65] Patel B B, Walsh D J, Kim D H, Kwok J, Lee B, Guironnet D and Diao Y 2021 Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution Sci. Adv. 6 eaaz7202
[66] Pyo J, Kim J T, Yoo J and Je J H 2014 Light propagation in conjugated polymer nanowires decoupled from a substrate Nanoscale 6 5620–3
[67] Tan A T L, Beroz J, Kolle M and Hart A J 2018 Direct-write freeform colloidal assembly Adv. Mater. 30 1803620
[68] Rhee H W, Shim J, Kim J Y, Bang D J, Yoon H, Kim M, Kim C C, You J B and Park H H 2022 Direct optical wire bonding through open-to-air polymerization for silicon photonic chips Opt. Lett. 47 714–7
[69] Tomaskovic-Crook E et al 2019 Human neural tissues from neural stem cells using conductive biogel and printed polymer microelectrode arrays for 3D electrical stimulation Adv. Healthcare Mater. 8 1900425
[70] Kim N, Huan X, Yang U, Kim J T and Je J H 2021 Vapor mapping in a microscopic space with a scanning nanoprobe interferometer J. Phys. Chem. C 125 24137–44
[71] Kim N, Lee J, Yong M J, Yang U, Kim J T, Kim J, Weon B M, Kim C C and Je J H 2020 Scanning nanowire probe interferometer for scalable humidity mapping Adv. Mater. Technol. 5 1900937
[72] Won K H, Weon B M and Je J H 2017 Highly stretchable polymer composite microtube chemical sensors produced by the meniscus-guided approach Curr. Appl. Phys. 17 339–42
[73] Lee J, Oh S, Pyo J, Kim J M and Je J H 2015 A light-driven supramolecular nanowire actuator Nanoscale 7 6457–61
[74] Huan X, Lee S, Lee H, Xu Z Y, Yang J, Chen M J, Liu Y and Kim J T 2021 One-step, continuous three-dimensional printing of multi-stimuli-responsive bilayer microactuators via a double-barreled theta pipette ACS Appl. Mater. Interfaces 13 43396–403
[75] Zhang P K, Zhu B C, Luo Y and Travas-Sejdic J 2022 Micropipette-based fabrication of free-standing, conducting polymer bilayer actuators Adv. Mater. Technol. 7 2200686
[76] Bae J, Lee S, Ahn J, Kim J H, Wajahat M, Chang W S, Yoon S Y, Kim J T, Seol S K and Pyo J 2020 3D-printed quantum dot nanopixels ACS Nano 14 10993–1001
[77] Bae J, Kim S, Ahn J, Sim H H, Wajahat M, Kim J H, Yoon S Y, Kim J T, Seol S K and Pyo J 2021 Nanoscale 3D printing of quantum dots on paper Adv. Eng. Mater. 23 2100339
[78] Yoo J, Jeong S, Kim S and Je J H 2015 A stretchable nanowire UV-Vis-NIR photodetector with high performance Adv. Mater. 27 1712–7
[79] Wu JY, JiaLN,ZhangYN,QuY, JiaBHandMossDJ 2021 Graphene oxide for integrated photonics and flat optics Adv. Mater. 33 2006415
[80] Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T, Miyauchi Y and Itami K 2019 Strength of carbon nanotubes depends on their chemical structures Nat. Commun. 10 3040
[81] Bai Y et al 2020 Super-durable ultralong carbon nanotubes Science 369 1104–6
[82] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9
[83] Blake P, Hill E W, Castro Neto A H, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Making graphene visible Appl. Phys. Lett. 91 063124
[84] Novoselov K S, Fal ′ ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 A roadmap for graphene Nature 490 192–200
[85] Kim F, Cote L J and Huang J X 2010 Graphene oxide: surface activity and two-dimensional assembly Adv. Mater. 22 1954–8
[86] Wajahat M, Lee S, Kim J H, Ahn J, Sim H H, Kim J H, Bae J, Kim S H, Pyo J and Seol S K 2022 Three-dimensional printing of silver nanoparticle-decorated graphene microarchitectures Addit. Manuf. 60 103249
[87] Wajahat M, Kim J H, Ahn J, Lee S, Bae J, Pyo J and Seol S K 2020 3D printing of Fe3O4 functionalized graphene-polymer (FGP) composite microarchitectures Carbon 167 278–84
[88] Pei S F and Cheng H M 2012 The reduction of graphene oxide Carbon 50 3210–28
[89] Chang W S, Jeong H, Kim J H, Lee S, Wajahat M, Han J T, Cho S H and Seol S K 2017 Micropatterning of reduced graphene oxide by meniscus-guided printing Carbon 123 364–70
[90] Iijima S 1991 Helical microtubules of graphitic carbon Nature 354 56–58
[91] Schroeder V, Savagatrup S, He M, Lin S B and Swager T M 2019 Carbon nanotube chemical sensors Chem. Rev. 119 599–663
[92] Kim J H, Lee S, Wajahat M, Jeong H, Chang W S, Jeong H J, Yang J R, Kim J T and Seol S K 2016 Three-dimensional printing of highly conductive carbon nanotube microarchitectures with fluid ink ACS Nano 10 8879–87
[93] Wajahat M, Lee S, Kim J H, Chang W S, Pyo J, Cho S H and Seol S K 2018 Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube-polymer composites ACS Appl. Mater. Interfaces 10 19999–20005
[94] Moghadam P Z, Li A, Wiggin S B, Tao A D, Maloney A G P, Wood P A, Ward S C and Fairen-Jimenez D 2017 Development of a Cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future Chem. Mater. 29 2618–25
[95] Connolly B M, Madden D G, Wheatley A E H and Fairen-Jimenez D 2020 Shaping the future of fuel: monolithic metal–organic frameworks for high-density gas storage J. Am. Chem. Soc. 142 8541–9
[96] Ren J W, Musyoka N M, Langmi H W, Swartbooi A, North B C and Mathe M 2015 A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications Int. J. Hydrog. Energy 40 4617–22
[97] Grande C A, Agueda V I, Spjelkavik A and Blom R 2015 An efficient recipe for formulation of metal-organic frameworks Chem. Eng. Sci. 124 154–8
[98] Pimentel B R, Fultz A W, Presnell K V and Lively R P 2017 Synthesis of water-sensitive metal–organic frameworks within fiber sorbent modules Ind. Eng. Chem. Res. 56 5070–7
[99] Kim J, Kim S H, Yang S T and Ahn W S 2012 Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: synthesis optimization and adsorption/catalytic applications Microporous Mesoporous Mater. 161 48–55
[100] Bazer-Bachi D, Assié L, Lecocq V, Harbuzaru B and Falk V 2014 Towards industrial use of metal-organic framework: impact of shaping on the MOF properties Powder Technol. 255 52–59
[101] Tian T, Velazquez-Garcia J, Bennett T D and Fairen-Jimenez D 2015 Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity J. Mater. Chem. A 3 2999–3005
[102] Thakkar H, Eastman S, Al-Naddaf Q, Rownaghi A A and Rezaei F 2017 3D-printed metal–organic framework monoliths for gas adsorption processes ACS Appl. Mater. Interfaces 9 35908–16
[103] Bible M, Sefa M, Fedchak J A, Scherschligt J, Natarajan B, Ahmed Z and Hartings M R 2018 3D-printed acrylonitrile butadiene styrene-metal organic framework composite materials and their gas storage properties 3D Print. Addit. Manuf. 5 63–72
[104] Kreider M C, Sefa M, Fedchak J A, Scherschligt J, Bible M, Natarajan B, Klimov N N, Miller A E, Ahmed Z and Hartings M R 2018 Toward 3D printed hydrogen storage materials made with ABS-MOF composites Polym. Adv. Technol. 29 867–73
[105] Lawson S, Snarzyk M, Hanify D, Rownaghi A A and Rezaei F 2020 Development of 3D-printed polymer-MOF monoliths for CO2 adsorption Ind. Eng. Chem. Res. 59 7151–60
[106] Dhainaut J, Bonneau M, Ueoka R, Kanamori K and Furukawa S 2020 Formulation of metal–organic framework inks for the 3D printing of robust microporous solids toward high-pressure gas storage and separation ACS Appl. Mater. Interfaces 12 10983–92
[107] Lahtinen E, Precker R L M, Lahtinen M, Hey-Hawkins E and Haukka M 2019 Selective laser sintering of metal-organic frameworks: production of highly porous filters by 3D printing onto a polymeric matrix ChemPlusChem 84 222–5
[108] LimGJH,Wu Y, ShahBB,KohJJ,LiuCK,ZhaoD, Cheetham A K, Wang J and Ding J 2019 3D-printing of pure metal–organic framework monoliths ACS Mater. Lett. 1 147–53
[109] Tian T, Zeng Z X, Vulpe D, Casco M E, Divitini G, Midgley P A, Silvestre-Albero J, Tan J C, Moghadam P Z and Fairen-Jimenez D 2018 A sol–gel monolithic metal–organic framework with enhanced methane uptake Nat. Mater. 17 174–9
[110] Wei G, Su Z Q, Reynolds N P, Arosio P, Hamley I W, Gazit E and Mezzenga R 2017 Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology Chem. Soc. Rev. 46 4661–708
[111] JianHL,WangMY, DongQQ,LiJL,WangAH,LiX, Ren P and Bai S 2019 Dipeptide self-assembled hydrogels with tunable mechanical properties and degradability for 3D bioprinting ACS Appl. Mater. Interfaces 11 46419–26
[112] Gao G F, Yonezawa T, Hubbell K, Dai G H and Cui X F 2015 Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging Biotechnol. J. 10 1568–77
[113] Elomaa L, Pan C C, Shanjani Y, Malkovskiy A, Sepp.l. J V and Yang Y Z 2015 Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography J. Mater. Chem. B 3 8348–58
[114] Lim S H, Kathuria H, Amir M H B, Zhang X Y, DuongH T T, Ho PC L and Kang L F 2021 High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide J. Control. Release 329 907–18
[115] YangJ,ChenMJ,LeeH,XuZY, ZhouZW, FengSPand Kim J T 2021 Three-dimensional printing of self-assembled dipeptides ACS Appl. Mater. Interfaces 13 20573–80
[116] YangJ,HuanX,LiuY, LeeH,ChenMJ,HuSQ,CaoSX and Kim J T 2022 Three-dimensional printing of dipeptides with spatioselective programming of crystallinity for multilevel anticounterfeiting Nano Lett. 22 7776–83
[117] Green M A, Ho-Baillie A and Snaith H J 2014 The emergence of perovskite solar cells Nat. Photon. 8 506–14
[118] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber Science 342 341–4
[119] Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gra¨tzel M, Mhaisalkar S and Sum T C 2013 Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 Science 342 344–7
[120] Shi D et al 2015 Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals Science 347 519–22
[121] Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L and Huang J S 2015 Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals Science 347 967–70
[122] Jeong J et al 2021 Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells Nature 592 381–5
[123] Kim J S et al 2022 Ultra-bright, efficient and stable perovskite light-emitting diodes Nature 611 688–94
[124] Eaton S W, Lai M L, Gibson N A, Wong A B, Dou L T, Ma J, Wang L W, Leone S R and Yang P D 2016 Lasing in robust cesium lead halide perovskite nanowires Proc. Natl Acad. Sci. USA 113 1993–8
[125] ZhangHH,Wu YS,LiaoQ,ZhangZY, LiuYP, GaoQG, LiuP, Li M L,Yao J Nand FuHB 2018 A two-dimensional Ruddlesden–Popper perovskite nanowire laser array based on ultrafast light-harvesting quantum wells Angew. Chem. 130 7874–8
[126] GuGL et al 2020 A biomimetic eye with a hemispherical perovskite nanowire array retina Nature 581 278–82
[127] Harwell J, Burch J, Fikouras A, Gather M C, di Falco A and Samuel I D W 2019 Patterning multicolor hybrid perovskite films via top-down lithography ACS Nano 13 3823–9
[128] Zou C, Chang C, Sun D, B.hringer K F and Lin L Y 2020 Photolithographic patterning of perovskite thin films for multicolor display applications Nano Lett. 20 3710–7
[129] Chen M J et al 2021 Three-dimensional perovskite nanopixels for ultrahigh-resolution color displays and multilevel anticounterfeiting Nano Lett. 21 5186–94
[130] Chen M J et al 2023 3D printing of arbitrary perovskite nanowire heterostructures Adv. Funct. Mater. 33 2212146