• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1010020 (2023)
Kang Xu1,2, Yongxin Zhu2,*, Bo Wu2, Xiaoying Zheng2, and Lingyao Chen3
Author Affiliations
  • 1School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 3Shanghai Information Technology Research Center, Shanghai 201210, China
  • show less
    DOI: 10.3788/LOP220950 Cite this Article Set citation alerts
    Kang Xu, Yongxin Zhu, Bo Wu, Xiaoying Zheng, Lingyao Chen. Diffraction Image Screening of Radiation Facilities Based on Privacy Protection Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010020 Copy Citation Text show less
    References

    [1] Liang C, Zhang W H, Wei Z S et al. Transition-metal redox evolution and its effect on thermal stability of LiNixCoyMnzO2 based on synchrotron soft X-ray absorption spectroscopy[J]. Journal of Energy Chemistry, 59, 446-454(2021).

    [2] Shang L, Shang F L, Sun Z B et al. Overview of special power supplies for advanced synchrotron radiation source[J]. High Power Laser and Particle Beams, 31, 12-17(2019).

    [3] Zhang H, Guo H T, Xu Y T et al. Research progress in chalcogenide glass fibers for infrared laser delivery[J]. Chinese Journal of Lasers, 49, 0101007(2022).

    [4] Sun W Y, Huang J P, Chen L M et al. Design of a 10 W level dispersion-managed high-power ultrafast mid-infrared fiber laser system[J]. Chinese Journal of Lasers, 49, 0101012(2022).

    [5] Xu C J, Zhang J Q, Liu M et al. Midinfrared laser in Ho3+-doped ZBYA glass fiber[J]. Chinese Journal of Lasers, 49, 0101016(2022).

    [6] McMahan H B, Moore E, Ramage D et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. https://arxiv.org/abs/1602.05629

    [7] Reisizadeh A, Mokhtari A, Hassani H et al. FedPAQ: a communication-efficient federated learning method with periodic averaging and quantization[EB/OL]. https://arxiv.org/abs/1909.13014

    [8] Hamer J, Mohri M, Suresh A T. Fedboost: a communication-efficient algorithm for federated learning[C], 3973-3983(2020).

    [9] Nakajima H, Kotani A, Harada K et al. Electron diffraction covering a wide angular range from Bragg diffraction to small-angle diffraction[J]. Microscopy, 67, 207-213(2018).

    [10] Deng S J, Wang H Y, Xu A et al. Target detection method based on antigrowth[J]. Acta Optica Sinica, 42, 0210002(2022).

    [11] Zhang Y, Zhang Y, Shi Z G et al. Image simulation method of infrared UAV based on image derivation[J]. Acta Optica Sinica, 42, 0210003(2022).

    [12] Zhu J P, Wang R K, Duan Z J et al. Three-dimensional face modeling based on multi-scale attention phase unwrapping[J]. Acta Optica Sinica, 42, 0112005(2022).

    [13] Frank M, Carlson D B, Hunter M S et al. Femtosecond X-ray diffraction from two-dimensional protein crystals[J]. IUCrJ, 1, 95-100(2014).

    [14] Harder R. Deep neural networks in real-time coherent diffraction imaging[J]. IUCrJ, 8, 1-3(2021).

    [15] Rivenson Y, Wu Y C, Ozcan A. Deep learning in holography and coherent imaging[J]. Light: Science & Applications, 8, 85(2019).

    [16] Ito S, Ueno G, Yamamoto M. DeepCentering: fully automated crystal centering using deep learning for macromolecular crystallography[J]. Journal of Synchrotron Radiation, 26, 1361-1366(2019).

    [17] Sullivan B, Archibald R, Azadmanesh J et al. BraggNet: integrating Bragg peaks using neural networks[J]. Journal of Applied Crystallography, 52, 854-863(2019).

    [18] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C], 1097-1105(2012).

    [19] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556

    [20] Zhou Y P, Chang H Y, Lu Y H et al. Improving the performance of VGG through different granularity feature combinations[J]. IEEE Access, 9, 26208-26220(2020).

    [21] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [22] Zhao T M, Liu J, Wang Y et al. Towards low-cost sign language gesture recognition leveraging wearables[J]. IEEE Transactions on Mobile Computing, 20, 1685-1701(2021).

    [23] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [24] Anandhi V, Vinod P, Menon V G. Malware visualization and detection using DenseNets[J]. Personal and Ubiquitous Computing, 1-17(2021).

    [25] Deng Y H, Lyu F, Ren J et al. AUCTION: automated and quality-aware client selection framework for efficient federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 33, 1996-2009(2022).

    [26] Zhou Y H, Ye Q, Lü J C. Communication-efficient federated learning with compensated overlap-FedAvg[J]. IEEE Transactions on Parallel and Distributed Systems, 33, 192-205(2022).

    [27] Zhang S, Gong Y H, Wang J J. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 42, 453-482(2019).

    [28] Bulinski A, Dimitrov D. Statistical estimation of the Kullback-Leibler divergence[J]. Mathematics, 9, 544(2021).

    [29] Ji S Y, Zhang Z Z, Ying S H et al. Kullback–Leibler divergence metric learning[J]. IEEE Transactions on Cybernetics, 52, 2047-2058(2022).

    [30] Alexopoulos A. The fractional Kullback-Leibler divergence[J]. Journal of Physics A: Mathematical and Theoretical, 54, 075001(2021).

    [31] Ke T W, Brewster A S, Yu S X et al. A convolutional neural network-based screening tool for X-ray serial crystallography[J]. Journal of Synchrotron Radiation, 25, 655-670(2018).

    Kang Xu, Yongxin Zhu, Bo Wu, Xiaoying Zheng, Lingyao Chen. Diffraction Image Screening of Radiation Facilities Based on Privacy Protection Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010020
    Download Citation