• Chinese Optics Letters
  • Vol. 23, Issue 2, 021203 (2025)
Junchen Liu*, Guohao Chen, Mengxin Liu, Wanghang Gu..., Taoyu Qian, Xinghua Qu and Fumin Zhang**|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/COL202523.021203 Cite this Article Set citation alerts
    Junchen Liu, Guohao Chen, Mengxin Liu, Wanghang Gu, Taoyu Qian, Xinghua Qu, Fumin Zhang, "High-precision multichannel time-domain wavelength division multiplexing FMCW LiDAR ranging and 3D imaging," Chin. Opt. Lett. 23, 021203 (2025) Copy Citation Text show less
    References

    [1] Y. Wang, Z. Hua, J. Shi et al. Laser feedback frequency-modulated continuous-wave LiDAR and 3-D imaging. IEEE Trans. Instrum. Meas., 72, 7002309(2023).

    [2] J. Riemensberger, A. Lukashchuk, M. Karpov et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164(2020).

    [3] M. Liu, J. Liu, W. Gu et al. Synchronous measurement of velocity and distance with high resolution based on comb reference common-path interferometric FMCW lidar. Opt. Lasers Eng., 176, 108076(2024).

    [4] Z. Liu, J. Lu, Z. Hu et al. High-precision alkali-atom density measurement and control methods using light absorption for dual-beam SERF magnetometers. Chin. Opt. Lett., 22, 051201(2024).

    [5] X. Cheng, J. Liu, L. Jia et al. Precision and repeatability improvement in frequency-modulated continuous-wave velocity measurement based on the splitting of beat frequency signals. Opt. Express, 29, 28582(2021).

    [6] X. Liang, T. Wu, J. Lin et al. Optical frequency comb frequency-division multiplexing dispersive interference multichannel distance measurement. Nanomanufacturing Metrol., 6, 6(2023).

    [7] L. Jia, B. Jin, J. Zheng et al. Multichannel gas absorption spectrometer based on on-chip frequency-modulated continuous-wave interference system. J. Lightwave Technol., 42, 1710(2024).

    [8] C. Sun, Z. Chen, S. Ye et al. Highly-time-resolved FMCW LiDAR with synchronously-nonlinearity-corrected acquisition for dynamic locomotion. Opt. Express, 31, 7774(2023).

    [9] Z. Li, B. Liu, C. R. Liao et al. Solid-state FMCW LiDAR with in-fiber beam scanner. Opt. Lett., 47, 469(2022).

    [10] B. Shi, Y.-H. Luo, W. Sun et al. Frequency-comb-linearized, widely tunable lasers for coherent ranging. Photonics Res., 12, 663(2024).

    [11] C. Wang, J. B. Khurgin, H. Yu. Watt-level tunable Ti:sapphire laser directly pumped with green laser diodes. Opt. Express, 31, 32010(2023).

    [12] C. Li, X. Cao, K. Wu et al. Blind zone-suppressed hybrid beam steering for solid-state Lidar. Photonics Res., 9, 1871(2021).

    [13] Y. Li, B. Chen, Q. Na et al. Wide-steering-angle high-resolution optical phased array. Photonics Res., 9, 2511(2021).

    [14] M. Okano, C. Chong. Swept Source Lidar: simultaneous FMCW ranging and nonmechanical beam steering with a wideband swept source. Opt. Express, 28, 23898(2020).

    [15] N. Kim, M. U. Jung, H. Jang et al. Distance recovery via swept frequency mixing for data-efficient FMCW LiDAR. Opt. Lett., 48, 3657(2023).

    [16] S. Li, Z. Cui, X. Ye et al. Chip-based microwave-photonic radar for high-resolution imaging. Laser Photonics Rev., 14, 1900239(2020).

    [17] J. Zheng, L. Jia, Y. Zhai et al. High-precision silicon-integrated frequency-modulated continuous wave LiDAR calibrated using a microresonator. ACS Photonics, 9, 2783(2022).

    [18] Y. Zhang, Y. Xu, J. Shi et al. Monolithic integrated linear frequency modulated dual-wavelength DFB laser chip with high linearity and its application in long distance ranging. ACS Photonics, 10, 2344(2023).

    [19] J. Liu, H. Tian, E. Lucas et al. Monolithic piezoelectric control of soliton microcombs. Nature, 583, 385(2020).

    [20] Y. Zhu, S. Zeng, L. Zhu. Optical beam steering by using tunable, narrow-linewidth butt-coupled hybrid lasers in a silicon nitride photonics platform. Photonics Res., 8, 375(2020).

    [21] A. Hangauer, Y. Chen, G. Wysocki. Chirped laser dispersion spectroscopy for spectroscopic chemical sensing with simultaneous range detection. Opt. Lett., 46, 198(2021).

    [22] B. He, C. Zhang, J. Yang et al. Massively parallel FMCW lidar with cm range resolution using an electro-optic frequency comb. Opt. Lett., 48, 3621(2023).

    [23] J. Wang, Z. Cai, J. Yu et al. Nanometer-scale displacement measurement based on an orthogonal dual Michelson interferometer. Chin. Opt. Lett., 21, 101201(2023).

    [24] J. Wang, J. Zhu, B. Niu. Integrated nonlinearity calibration optical-electrical engine for FMCW LiDAR application. Opt. Lett., 48, 6100(2023).

    [25] H. Pan, X. Qu, F. Zhang. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance. Opt. Express, 26, 15186(2018).

    [26] Y. Zhi, Y. Sun, Y. Zou et al. Symmetrical dual-sideband oppositely chirped differential FMCW LiDAR. Opt. Express, 31, 38114(2023).

    [27] V. Snigirev, A. Riedhauser, G. Lihachev et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature, 615, 411(2023).

    [28] G. Lihachev, J. Riemensberger, W. Weng et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun., 13, 3522(2022).

    Junchen Liu, Guohao Chen, Mengxin Liu, Wanghang Gu, Taoyu Qian, Xinghua Qu, Fumin Zhang, "High-precision multichannel time-domain wavelength division multiplexing FMCW LiDAR ranging and 3D imaging," Chin. Opt. Lett. 23, 021203 (2025)
    Download Citation