• Advanced Photonics
  • Vol. 6, Issue 5, 056010 (2024)
Hui Wu1,†, Binxiong Pan1, Qi Zhao1, Chenyi Wang1..., Rui Pu1, Chang Liu1, Zeheng Chen1, Zewei Luo2, Jing Huang1, Wei Wei2, Tongsheng Chen2 and Qiuqiang Zhan1,3,*|Show fewer author(s)
Author Affiliations
  • 1South China Normal University, South China Academy of Advanced Optoelectronics, Centre for Optical and Electromagnetic Research, Guangzhou, China
  • 2South China Normal University, College of Biophotonics, MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
  • 3South China Normal University, Guangdong Engineering Research Centre of Optoelectronic Intelligent Information Perception, Guangzhou, China
  • show less
    DOI: 10.1117/1.AP.6.5.056010 Cite this Article Set citation alerts
    Hui Wu, Binxiong Pan, Qi Zhao, Chenyi Wang, Rui Pu, Chang Liu, Zeheng Chen, Zewei Luo, Jing Huang, Wei Wei, Tongsheng Chen, Qiuqiang Zhan, "Versatile cascade migrating photon avalanches for full-spectrum extremely nonlinear emissions and super-resolution microscopy," Adv. Photon. 6, 056010 (2024) Copy Citation Text show less
    References

    [1] H. Zhang et al. Photon-avalanche upconversion of Ho3+ in NaYF4 and enhancement of violet, blue and green emissions induced by sensitization of Tm3+. Mater. Sci. Eng. B, 176, 256-259(2011). https://doi.org/10.1016/j.mseb.2010.12.006

    [2] C. Lee et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature, 589, 230-235(2021).

    [3] Y. Liang et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol., 17, 524-530(2022).

    [4] A. Fernandez-Bravo et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol., 13, 572-577(2018).

    [5] K. Koshelev et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [6] A. Bednarkiewicz et al. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz., 4, 881-889(2019).

    [7] W. Wang et al. Dual-modulation difference stimulated emission depletion microscopy to suppress the background signal. Adv. Photonics, 4, 046001(2022).

    [8] A. Bednarkiewicz, E. M. Chan, K. Prorok. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. Nanoscale Adv., 2, 4863-4872(2020).

    [9] L. Marciniak, A. Bednarkiewicz, K. Elzbieciak. NIR–NIR photon avalanche based luminescent thermometry with Nd3+ doped nanoparticles. J. Mater. Chem. C, 6, 7568-7575(2018). https://doi.org/10.1039/C8TC01553H

    [10] C. Bradac et al. Room-temperature spontaneous superradiance from single diamond nanocrystals. Nat. Commun., 8, 1205(2017).

    [11] F. Wang et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater., 10, 968-973(2011).

    [12] E. S. Levy et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano, 10, 8423-8433(2016).

    [13] M.-F. Joubert. Photon avalanche upconversion in rare earth laser materials. Opt. Mater., 11, 181-203(1999).

    [14] S. Kück et al. Avalanche up-conversion processes in Pr, Yb-doped materials. J. Alloys Compd., 300–301, 65-70(2000).

    [15] E. Osiac et al. Spectroscopic characterisation of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY2F8. Opt. Mater., 24, 537-545(2003). https://doi.org/10.1016/S0925-3467(03)00089-2

    [16] H. Scheife et al. Advances in up-conversion lasers based on Er3+ and Pr3+. Opt. Mater., 26, 365-374(2004). https://doi.org/10.1016/j.optmat.2003.10.010

    [17] P. Goldner et al. Orange avalanche upconversion for high-resolution laser spectroscopy. EPJ Appl. Phys., 37, 161-168(2007).

    [18] L. Li et al. A theoretical study of intrinsic optical bistability dynamics in Tm3+/Yb3+ codoped systems with an upconversion avalanche mechanism. J. Opt. A: Pure Appl. Opt., 11, 105203(2009). https://doi.org/10.1088/1464-4258/11/10/105203

    [19] K. Mishra, Y. Dwivedi, S. B. Rai. Observation of avalanche upconversion emission in Pr:Y2O3 nanocrystals on excitation with 532 nm radiation. Appl. Phys. B, 106, 101-105(2012). https://doi.org/10.1007/s00340-011-4624-y

    [20] M. Wermuth, H. U. Güdel. Photon avalanche in Cs2ZrBr6:Os4+. J. Am. Chem. Soc., 121, 10102-10111(1999). https://doi.org/10.1021/ja990847z

    [21] D. Peng et al. Lanthanide-doped energy cascade nanoparticles: full spectrum emission by single wavelength excitation. Chem. Mater., 27, 3115-3120(2015).

    [22] A. Skripka et al. A generalized approach to photon avalanche upconversion in luminescent nanocrystals. Nano Lett., 23, 7100-7106(2023).

    [23] Q. Zhan et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun., 8, 1058(2017).

    [24] N. J. J. Johnson et al. Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc., 134, 11068-11071(2012).

    [25] F. Wang, R. Deng, X. Liu. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc., 9, 1634-1644(2014). https://doi.org/10.1038/nprot.2014.111

    [26] X. Li et al. Energy migration upconversion in manganese (II)-doped nanoparticles. Angew. Chem. Int. Ed., 54, 13312-13317(2015).

    [27] Q. Zou et al. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale, 9, 6521-6528(2017). https://doi.org/10.1039/C7NR02124K

    [28] D. Dong et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl., 9, 11(2020).

    [29] G. Huang et al. Upconversion nanoparticles for super-resolution quantification of single small extracellular vesicles. eLight, 2, 20(2022).

    [30] C. Chen, D. Jin. Giant nonlinearity in upconversion nanoparticles. Nat. Photonics, 16, 553-554(2022).

    [31] X. Hao, C. Kuang. Towards extremely high-order optical nonlinearity at the nanoscale. Adv. Photonics, 4, 020501(2022).

    [32] S. Wen et al. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics, 13, 828-838(2019).

    [33] S. Lamon et al. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv., 7, eabe2209(2021).

    [34] M. Gu, X. Li, Y. Cao. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl., 3, e177(2014).

    [35] S. N. Sanders et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature, 604, 474-478(2022).

    [36] X. Chen et al. Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev., 44, 1318-1330(2015).

    [37] G. Ajithkumar et al. Judd-Ofelt intensity parameters and laser analysis of Pr3+ doped phosphate glasses sensitized by Mn2+ ions. J. Non-Cryst. Solids, 275, 93-106(2000). https://doi.org/10.1016/S0022-3093(00)00244-1

    [38] J. Dong et al. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet. J. Opt. Soc. Am. B, 20, 1975-1979(2003). https://doi.org/10.1364/JOSAB.20.001975

    [39] P. Villanueva-Delgado, D. Biner, K. W. Kramer. Judd-Ofelt analysis of beta-NaGdF4:Yb3+, Tm3+ and beta-NaGdF4:Er3+ single crystals. J. Lumin., 189, 84-90(2017). https://doi.org/10.1016/j.jlumin.2016.04.023

    [40] B. M. Walsh, N. P. Barnes. Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm. Appl. Phys. B, 78, 325-333(2004). https://doi.org/10.1007/s00340-003-1393-2

    [41] Q. Su et al. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc., 134, 20849-20857(2012).

    [42] X. Ping, T. R. Gosnell. Efficient sensitisation of praesodymium 1.31  μm fluorescence by optically pumped ytterbium ions in ZBLAN glass. Electron. Lett., 31, 191-192(1995). https://doi.org/10.1049/el:19950120

    [43] L. D. Merkle et al. Spectroscopy and laser operation of Pr, Mg:SrAl12O19. J. Appl. Phys., 79, 1849-1856(1996).

    [44] C. K. Jayasankar, V. Kumar. Judd-Ofelt intensity analysis and spectral studies of Pr(III) ions in alkali zinc borosulphate glasses. Mater. Chem. Phys., 46, 84-91(1996).

    Hui Wu, Binxiong Pan, Qi Zhao, Chenyi Wang, Rui Pu, Chang Liu, Zeheng Chen, Zewei Luo, Jing Huang, Wei Wei, Tongsheng Chen, Qiuqiang Zhan, "Versatile cascade migrating photon avalanches for full-spectrum extremely nonlinear emissions and super-resolution microscopy," Adv. Photon. 6, 056010 (2024)
    Download Citation