• Journal of Electronic Science and Technology
  • Vol. 22, Issue 1, 100234 (2024)
Yan Liang1, Song Chen1,*, Xin Dong1, and Tu Liu2
Author Affiliations
  • 1School of Computer Engineering, Chengdu Technological University, Chengdu, 611730, China
  • 2HAN Networks Corporation Limited, Beijing, 100094, China
  • show less
    DOI: 10.1016/j.jnlest.2024.100234 Cite this Article
    Yan Liang, Song Chen, Xin Dong, Tu Liu. Fine-grained grid computing model for Wi-Fi indoor localization in complex environments[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100234 Copy Citation Text show less
    References

    [1] Claridades A.R.C., Lee J.. Developing a data model of indoor points of interest to support location-based services. J. Sensors, 2020, 8885384:1-16(2020).

    [2] Zhao Y.-L., Liang J.-Q., Cui Y.-F., Sha X.-P., Li W.-J.. Adaptive 3D position estimation of pedestrians by wearing one ankle sensor. IEEE Sens. J., 20, 11642-11651(2020).

    [3] Yang M., Ai B., He R.-S. et al. V2V channel characterization and modeling for underground parking garages. China Commun., 16, 93-105(2019).

    [4] Ghose A., Li B.-B., Liu S.-Y.. Mobile targeting using customer trajectory patterns. Manage. Sci., 65, 5027-5049(2019).

    [5] Bastida-Castillo A., Gómez-Carmona C.D., De la Cruz-Sánchez E., Reche-Royo X., Ibáñez S.J., Ortega J.P.. Accuracy and inter-unit reliability of ultra-wide-band tracking system in indoor exercise. Appl. Sci., 9, 939:1-11(2019).

    [6] Ruan L., Zhang L., Zhou T., Long Y.. An improved Bluetooth indoor positioning method using dynamic fingerprint window. Sensors, 20, 7269:1-19(2020).

    [7] Bianchi V., Ciampolini P., De Munari I.. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE T. Instrum. Meas., 68, 566-575(2019).

    [8] Asaad S.M., Potrus M.Y., Ghafoor K.Z., Maghdid H.S., Mulahuwaish A.. Improving positioning accuracy using optimization approaches: A survey. research challenges and future perspectives, Wireless Pers. Commun., 122, 3393-3409(2022).

    [9] Z. Wei, J.L. Chen, H. Tang, H. Zhang, RSSIbased location fingerprint method f RFID indo positioning: A review, Nondestruct. Test. Eva. (Sept. 2023), doi: 10.108010589759.2023.2253493.

    [10] Liu W., Zhang Y.-G., Deng Z.-L., Zhou H.-Y.. Low-cost indoor wireless fingerprint location database construction methods: A review. IEEE Access, 11, 37535-37545(2023).

    [11] Hayward S.J., van Lopik K., Hinde C., West A.A.. A survey of indoor location technologies. techniques and applications in industry, Internet Things-Neth., 20, 100608:1-19(2022).

    [12] Jia M., Khattak S.B.A., Guo Q., Gu X.-M., Lin Y.. Access point optimization for reliable indoor localization systems. IEEE T. Reliab., 69, 1424-1436(2020).

    [13] Li X.-N., Dai Z.-C., He L.-M.. A k-nearest neighbor indoor fingerprint location method based on coarse positioning circular domain and the highest similarity threshold. Meas. Sci. Technol., 34, 015108:1-10(2023).

    [14] Tong X.-Y., Wan Y., Li Q.-R., Tian X.-H., Wang X.-B.. CSI fingerprinting localization with low human efforts. IEEE/ACM T. Network., 29, 372-385(2021).

    [15] Yang Y., Zhou A.-F., Ma H.-D.. FineAP: Fine-grained access point deployment strategy for 60 GHz millimeter-wave wireless networks. IEEE Commun. Lett., 27, 381-385(2023).

    [16] Wu Y.-Z., Kokkoniemi J., Han C., Juntti M.. Interference and coverage analysis for terahertz networks with indoor blockage effects and line-of-sight access point association. IEEE T. Wirel. Commun., 20, 1472-1486(2021).

    [17] J.H. Hu, A.G. Zhang, Z. Chen, X.P. Jin, WiFi indo localization based on long shtterm memy neural wk model of geic algithm, in: Proc. of 11th Intl. Conf. on AgroGeoinfmatics, Wuhan, 2023, pp. 1–4.

    [18] Yuan Y.-Z., Yang X., Lu Q.-X., Guo Y., Liu Z.-X., Luo X.-Y.. An indoor location method based on features optimization for different regions with improved curve smoothness index. IEEE Sens. J., 23, 7362-7370(2023).

    [19] Gao B., Yang F., Cui N., Xiong K., Lu Y., Wang Y.-W.. A federated learning framework for fingerprinting-based indoor localization in multibuilding and multifloor environments. IEEE Internet Things, 10, 2615-2629(2023).

    [20] Csik D., Odry Á., Sarcevic P.. Fingerprinting-based indoor positioning using data fusion of different radiocommunication-based technologies. Machines, 11, 302:1-24(2023).

    [21] Wang J.-J., Park J.. An enhanced indoor positioning algorithm based on fingerprint using fine-grained CSI and RSSI measurements of IEEE 802.11n WLAN. Sensors, 21, 2769:1-25(2021).

    [22] Jia B., Huang B.-Q., Gao H.-P., Li W., Hao L.-F.. Selecting critical WiFi APs for indoor localization based on a theoretical error analysis. IEEE Access, 7, 36312-36321(2019).

    [23] Xue W.-X., Yu K.-G., Li Q.-Q. et al. Eight-diagram based access point selection algorithm for indoor localization. IEEE T. Veh. Technol., 69, 13196-13205(2020).

    [24] H.A. Pham, Q.T.T. Nguyen, T.V. Le, An improved weighted knearest neighbs algithm f high accuracy in indo localization, in: Proc. of 25th AsiaPacific Conf. on Communications, Ho Chi Minh City, 2019, pp. 24–27.

    [25] Wang B.-Y., Gan X.-L., Liu X.-L. et al. A novel weighted KNN algorithm based on RSS similarity and position distance for Wi-Fi fingerprint positioning. IEEE Access, 8, 30591-30602(2020).

    [26] Tao Y., Zhao L.. Fingerprint localization with adaptive area search. IEEE Commun. Lett., 24, 1446-1450(2020).

    [27] Zhou M., Li Y.-H., Tahir M.J., Geng X.-L., Wang Y., He W.. Integrated statistical test of signal distributions and access point contributions for Wi-Fi indoor localization. IEEE T. Veh. Technol., 70, 5057-5070(2021).

    [28] A. Poulose, D.S. Han, Perfmance analysis of fingerprint matching algithms f indo localization, in: Proc. of Intl. Conf. on Artificial Intelligence in Infmation Communication, Fukuoka, 2020, pp. 661–665.

    [29] Zheng Y., Liu J.-Y., Sheng M., Han S., Shi Y., Valaee S.. Toward practical access point deployment for angle-of-arrival based localization. IEEE T. Commun., 69, 2002-2014(2021).

    [30] Y. Zheng, J.Y. Liu, M. Sheng, S. Valaee, Y. Shi, Obstacleaware access points deployment f angleofarrival based indo localization, in: Proc. of IEEE Intl. Conf. on Communications, Dublin, 2020, pp. 1–6.

    [31] S.Y. Liu, R. De Lacerda, J. Fiina, WKNN indo WiFi localization method using kmeans clustering based radio mapping, in: Proc. of IEEE 93rd Vehicular Technology Conf., Helsinki, 2021, pp. 1–5.

    [32] Wang X.-Y.. The improvement and comparison study of distance metrics for machine learning algorithms for indoor Wi-Fi localization. IEEE Access, 11, 85513-85524(2023).

    [33] Xu F., Hu X.-K., Luo S.-W., Shang J.-G.. An efficient indoor Wi-Fi positioning method using virtual location of AP. ISPRS Int. J. Geo-Inf., 9, 261:1-16(2020).

    [34] H.C. Yen, L.Y.O. Yang, Z.M. Tsai, 3D indo localization identification through RSSIbased angle of arrival estimation with real WiFi signals, IEEE T. Microw. They 70 (10) (Oct. 2022) 4511–4527.

    [35] Yang X.-L., Li Q.-C., Zhou M., Wang J.-C.. Phase-calibration-based 3-D beamspace matrix pencil algorithm for indoor passive positioning and tracking. IEEE Sens. J., 23, 19670-19683(2023).

    [36] Jun J., He L., Gu Y. et al. Low-overhead WiFi fingerprinting. IEEE T. Mobile Comput., 17, 590-603(2018).

    [37] Wang R.-R., Li Z.-H., Luo H.-Y., Zhao F., Shao W.-H., Wang Q.. A robust Wi-Fi fingerprint positioning algorithm using stacked denoising autoencoder and multi-layer perceptron. Remote Sens.-Basel, 11, 1293:1-27(2019).

    Yan Liang, Song Chen, Xin Dong, Tu Liu. Fine-grained grid computing model for Wi-Fi indoor localization in complex environments[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100234
    Download Citation