[1] Tonna S, El-Osta A, Cooper M E and Tikellis C 2010 Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms Nat. Rev. Nephrol. 6 332–41
[2] Benga G, Porutiu D, Ghiran I, Kuchel P W, Gallagher C H and Cox G C 1992 Scanning electron microscopy of red blood cells from eleven species of marsupial Comp. Haematol. Int. 2 227–30
[3] Chu F, Anex D S, Jones A D and Hart B R 2020 Automated analysis of scanning electron microscopic images for assessment of hair surface damage R. Soc. Open Sci. 7 191438
[4] Rajakumar R, Koch S, Couture M, Favé M J, Lillico-Ouachour A, Chen T, De Blasis G, Rajakumar A, Ouellette D and Abouheif E 2018 Social regulation of a rudimentary organ generates complex worker-caste systems in ants Nature 562 574–7
[5] Khoshnevisan K, Maleki H and Baharifar H 2021 Nanobiocide based-silver nanomaterials upon coronaviruses: approaches for preventing viral infections Nanoscale Res. Lett. 16 100
[6] Chen Y et al 2021 Achieving a sub-10 nm nanopore array in silicon by metal-assisted chemical etching and machine learning Int. J. Extrem. Manuf. 3 035104
[7] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8
[8] Ren W F, Xu J K, Lian Z X, Sun X Q, Xu Z M and Yu H D 2022 Localized electrodeposition micro additive manufacturing of pure copper microstructures Int. J. Extrem. Manuf. 4 015101
[9] Schoth A, F?rster R and Menz W 2005 Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals Microsyst. Technol. 11 250–3
[10] Liu M J, Wang S T and Jiang L 2017 Nature-inspired superwettability systems Nat. Rev. Mater. 2 17036
[11] Zhang C Q, Macdams I I D A and Grunlan J C 2016 Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures Adv. Mater. 28 6292–321
[12] Si Y F, Dong Z C and Jiang L 2018 Bioinspired designs of superhydrophobic and superhydrophilic materials ACS Cent. Sci. 4 1102–12
[13] Han Z W, Mu Z Z, Yin W, Li W, Niu S C, Zhang J Q and Ren L Q 2016 Biomimetic multifunctional surfaces inspired from animals Adv. Colloid Interface Sci. 234 27–50
[14] Ueda E and Levkin P A 2013 Emerging applications of superhydrophilic-superhydrophobic micropatterns Adv. Mater. 25 1234–47
[15] Barthlott W, Mail M, Bhushan B and Koch K 2017 Plant surfaces: structures and functions for biomimetic innovations Nano-Micro Lett. 9 23
[16] Xu J K, Xiu S Y, Lian Z X, Yu H D and Cao J J 2022 Bioinspired materials for droplet manipulation: principles, methods and applications Droplet 1 11–37
[17] Barthlott W and Neinhuis C 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces Planta 202 1–8
[18] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L and Zhu D 2002 Super-hydrophobic surfaces: from natural to artificial Adv. Mater. 14 1857–60
[19] Wisdom K M, Watson J A, Qu X P, Liu F J, Watson G S and Chen C H 2013 Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate Proc. Natl Acad. Sci. USA 110 7992–7
[20] Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B and Jiang L 2007 The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography Adv. Mater. 19 2213–7
[21] Zheng Y M, Gao X F and Jiang L 2007 Directional adhesion of superhydrophobic butterfly wings Soft Matter 3 178–82
[22] Niu S C, Li B, Mu Z Z, Yang M, Zhang J Q, Han Z W and Ren L Q 2015 Excellent structure-based multifunction of Morpho butterfly wings: a review J. Bionic Eng. 12 170–89
[23] Gao X F and Jiang L 2004 Water-repellent legs of water striders Nature 432 36
[24] Wang Q B, Yao X, Liu H, Quéré D and Jiang L 2015 Self-removal of condensed water on the legs of water striders Proc. Natl Acad. Sci. USA 112 9247–52
[25] Liu M J, Wang S T, Wei Z X, Song Y L and Jiang L 2009 Bioinspired design of a superoleophobic and low adhesive water/solid interface Adv. Mater. 21 665–9
[26] Bixler G D and Bhushan B 2012 Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects Soft Matter 8 11271–84
[27] Feng L, Zhang Y A, Xi J M, Zhu Y, Wang N, Xia F and Jiang L 2008 Petal effect: a superhydrophobic state with high adhesive force Langmuir 24 4114–9
[28] Jin H Y, Li Y F, Zhang P, Nie S C and Gao N K 2016 The investigation of the wetting behavior on the red rose petal Appl. Phys. Lett. 108 151605
[29] Liu K S, Du J X, Wu J T and Jiang L 2012 Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials Nanoscale 4 768–72
[30] Murphy M P, Aksak B and Sitti M 2009 Gecko-inspired directional and controllable adhesion Small 5 170–5
[31] Vorobyev A Y and Guo C L 2013 Direct femtosecond laser surface nano/microstructuring and its applications Laser Photon. Rev. 7 385–407
[32] Zhang Y, Y, Jiao Y L, Li C Z, Chen C, Li J W, Hu Y L, Wu D and Chu J R 2020 Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications Int. J. Extrem. Manuf. 2 032002
[33] Darmanin T, de Givenchy E T, Amigoni S and Guittard F 2013 Superhydrophobic surfaces by electrochemical processes Adv. Mater. 25 1378–94
[34] Xia D Y, Johnson L M and López G P 2012 Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications Adv. Mater. 24 1287–302
[35] Wang X F, Ding B, Yu J Y and Wang M R 2011 Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials Nano Today 6 510–30
[36] Yang Y, Song X, Li X J, Chen Z Y, Zhou C, Zhou Q F and Chen Y 2018 Recent progress in biomimetic additive manufacturing technology: from materials to functional structures Adv. Mater. 30 1706539
[37] Wang S T, Liu K S, Yao X and Jiang L 2015 Bioinspired surfaces with superwettability: new insight on theory, design, and applications Chem. Rev. 115 8230–93
[38] Dong Z Q and Levkin P A 2023 3D microprinting of super-repellent microstructures: recent developments, challenges, and opportunities Adv. Funct. Mater. 33 2213916
[39] Zhou H, Niu H T, Wang H X and Lin T 2023 Self-healing superwetting surfaces, their fabrications, and properties Chem. Rev. 123 663–700
[40] Su B, Tian Y and Jiang L 2016 Bioinspired interfaces with superwettability: from materials to chemistry J. Am. Chem. Soc. 138 1727–48
[41] Wen L P, Tian Y and Jiang L 2015 Bioinspired super-wettability from fundamental research to practical applications Angew. Chem., Int. Ed. 54 3387–99
[42] Yao L and He J H 2014 Recent progress in antireflection and self-cleaning technology—from surface engineering to functional surfaces Prog. Mater. Sci. 61 94–143
[43] Han Z W, Jiao Z B, Niu S C and Ren L Q 2019 Ascendant bioinspired antireflective materials: opportunities and challenges coexist Prog. Mater. Sci. 103 1–68
[44] Durán I R and Laroche G 2019 Current trends, challenges, and perspectives of anti-fogging technology: surface and material design, fabrication strategies, and beyond Prog. Mater. Sci. 99 106–86
[45] Han Z W, Feng X M, Guo Z G, Niu S C and Ren L Q 2018 Flourishing bioinspired antifogging materials with superwettability: progresses and challenges Adv. Mater. 30 1704652
[46] Dhyani A, Choi W, Golovin K and Tuteja A 2022 Surface design strategies for mitigating ice and snow accretion Matter 5 1423–54
[47] Zhang Z S and Liu X Y 2018 Control of ice nucleation: freezing and antifreeze strategies Chem. Soc. Rev. 47 7116–39
[48] Kreder M J, Alvarenga J, Kim P and Aizenberg J 2016 Design of anti-icing surfaces: smooth, textured or slippery? Nat. Rev. Mater. 1 15003
[49] Wang L Z, Tian Z, Jiang G C, Luo X, Chen C H, Hu X Y, Zhang H J and Zhong M L 2022 Spontaneous dewetting transitions of droplets during icing & melting cycle Nat. Commun. 13 378
[50] Gong X J, Gao X F and Jiang L 2017 Recent progress in bionic condensate microdrop self-propelling surfaces Adv. Mater. 29 1703002
[51] Liang X C, Kumar V, Ahmadi F and Zhu Y Y 2022 Manipulation of droplets and bubbles for thermal applications Droplet 1 80–91
[52] Dai H Y, Dong Z C and Jiang L 2020 Directional liquid dynamics of interfaces with superwettability Sci. Adv. 6 eabb5528
[53] Leng X, Sun L C, Long Y J and Lu Y 2022 Bioinspired superwetting materials for water manipulation Droplet 1 139–69
[54] Li Y, He L L, Zhang X F, Zhang N and Tian D L 2017 External-field-induced gradient wetting for controllable liquid transport: from movement on the surface to penetration into the surface Adv. Mater. 29 1703802
[55] Yu C M, Zhang P P, Wang J M and Jiang L 2017 Superwettability of gas bubbles and its application: from bioinspiration to advanced materials Adv. Mater. 29 1703053
[56] Jin H C, Tian L M, Bing W, Zhao J and Ren L Q 2022 Bioinspired marine antifouling coatings: status, prospects, and future Prog. Mater. Sci. 124 100889
[57] Lishchynskyi O, Shymborska Y, Stetsyshyn Y, Raczkowska J, Skirtach A G, Peretiatko T and Budkowski A 2022 Passive antifouling and active self-disinfecting antiviral surfaces Chem. Eng. J. 446 137048
[58] Bhushan B and Jung Y C 2011 Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction Prog. Mater. Sci. 56 1–108
[59] Wang B, Liang W X, Guo Z G and Liu W M 2015 Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature Chem. Soc. Rev. 44 336–61
[60] Chu Z L, Feng Y J and Seeger S 2015 Oil/water separation with selective superantiwetting/superwetting surface materials Angew. Chem., Int. Ed. 54 2328–38
[61] Yu Z H, Zhu T X, Zhang J C, Ge M Z, Fu S H and Lai Y K 2022 Fog harvesting devices inspired from single to multiple creatures: current progress and future perspective Adv. Funct. Mater. 32 2200359
[62] Wang B, C X, Guo Z G and Liu W M 2021 Recent advances in atmosphere water harvesting: design principle, materials, devices, and applications Nano Today 40 101283
[63] Yue H, Zeng Q H, Huang J X, Guo Z G and Liu W M 2022 Fog collection behavior of bionic surface and large fog collector: a review Adv. Colloid Interface Sci. 300 102583
[64] Falde E J, Yohe S T, Colson Y L and Grinstaff M W 2016 Superhydrophobic materials for biomedical applications Biomaterials 104 87–103
[65] Chi J J, Zhang X X, Wang Y T, Shao C M, Shang L R and Zhao Y J 2021 Bio-inspired wettability patterns for biomedical applications Mater. Horiz. 8 124–44
[66] Jokinen V, Kankuri E, Hoshian S, Franssila S and Ras R H A 2018 Superhydrophobic blood-repellent surfaces Adv. Mater. 30 1705104
[67] Barthlott W et al 2010 The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water Adv. Mater. 22 2325–8
[68] Parker A R and Lawrence C R 2001 Water capture by a desert beetle Nature 414 33–34
[69] Ju J, Bai H, Zheng Y M, Zhao T Y, Fang R C and Jiang L 2012 A multi-structural and multi-functional integrated fog collection system in cactus Nat. Commun. 3 1247
[70] Feng S L, Delannoy J, Malod A, Zheng H X, Quéré D and Wang Z K 2020 Tip-induced flipping of droplets on Janus pillars: from local reconfiguration to global transport Sci. Adv. 6 eabb4540
[71] Feng S L, Zhu P A, Zheng H X, Zhan H Y, Chen C, Li J Q, Wang L Q, Yao X, Liu Y H and Wang Z K 2021 Three-dimensional capillary ratchet-induced liquid directional steering Science 373 1344–8
[72] Helbig R, Nickerl J, Neinhuis C and Werner C 2011 Smart skin patterns protect springtails PLoS One 6 e25105
[73] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J and Jiang L 2010 Directional water collection on wetted spider silk Nature 463 640–3
[74] Chen H W, Zhang P F, Zhang L W, Liu H L, Jiang Y, Zhang D Y, Han Z W and Jiang L 2016 Continuous directional water transport on the peristome surface of Nepenthes alata Nature 532 85–89
[75] Goodwyn P, P, Maezono Y, Hosoda N and Fujisaki K 2009 Waterproof and translucent wings at the same time: problems and solutions in butterflies Naturwissenschaften 96 781–7
[76] Wu D, Wang J N, Wu S Z, Chen Q D, Zhao S, Zhang H, Sun H B and Jiang L 2011 Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding Adv. Funct. Mater. 21 2927–32
[77] Yang Y, Li X J, Zheng X, Chen Z Y, Zhou Q F and Chen Y 2018 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation Adv. Mater. 30 1704912
[78] Cao M Y, Ju J, Li K, Dou S X, Liu K S and Jiang L 2014 Facile and large-scale fabrication of a cactus-inspired continuous fog collector Adv. Funct. Mater. 24 3235–40
[79] Yang Y et al 2021 Femtosecond laser regulated ultrafast growth of mushroom-like architecture for oil repellency and manipulation Nano Lett. 21 9301–9
[80] Song J L, Pan W H, Wang K, Chen F Z and Sun Y W 2020 Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition Int. J. Mach. Tools Manuf. 159 103637
[81] Li J Q, Zhou X F, Li J, Che L F, Yao J, McHale G, Chaudhury M K and Wang Z K 2017 Topological liquid diode Sci. Adv. 3 eaao3530
[82] Feng S L, Wang Q Q, Xing Y, Hou Y P and Zheng Y M 2020 Continuous directional water transport on integrating tapered surfaces Adv. Mater. Interfaces 7 2000081
[83] Lee M, Oh J, Lim H and Lee J 2021 Enhanced liquid transport on a highly scalable, cost-effective, and flexible 3D topological liquid capillary diode Adv. Funct. Mater. 31 2011288
[84] Li X, Li J Q and Dong G N 2020 Bioinspired topological surface for directional oil lubrication ACS Appl. Mater. Interfaces 12 5113–9
[85] Weisensee P B, Torrealba E J, Raleigh M, Jacobi A M and King W P 2014 Hydrophobic and oleophobic re-entrant steel microstructures fabricated using micro electrical discharge machining J. Micromech. Microeng. 24 095020
[86] Cai Z X, Chen F Z, Tian Y L, Zhang D W, Lian Z X and Cao M Y 2022 Programmable droplet transport on multi-bioinspired slippery surface with tridirectionally anisotropic wettability Chem. Eng. J. 449 137831
[87] Guo P, Zheng Y M, Wen M X, Song C, Lin Y C and Jiang L 2012 Icephobic/anti-icing properties of micro/nanostructured surfaces Adv. Mater. 24 2642–8
[88] Pan W H, Wu S, Huang L and Song J L 2021 Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates Nanoscale 13 14023–34
[89] Cheng Y Q, Liu Y B, Ye X, Liu M J, Du B G, Jin Y K, Wen R F, Lan Z, Wang Z K and Ma X H 2021 Macrotextures-enabled self-propelling of large condensate droplets Chem. Eng. J. 405 126901
[90] Park K C, Kim P, Grinthal A, He N, Fox D, Weaver J C and Aizenberg J 2016 Condensation on slippery asymmetric bumps Nature 531 78–82
[91] Tian Y, Zhu P G, Tang X, Zhou C M, Wang J M, Kong T T, Xu M and Wang L Q 2017 Large-scale water collection of bioinspired cavity-microfibers Nat. Commun. 8 1080
[92] Li K, Ju J, Xue Z X, Ma J, Feng L, Gao S and Jiang L 2013 Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water Nat. Commun. 4 2276
[93] Li Y X et al 2022 Directional and adaptive oil self-transport on a multi-bioinspired grooved conical spine Adv. Funct. Mater. 32 2201035
[94] Tuo Y J, Zhang H F, Rong W T, Jiang S Y, Chen W P and Liu X W 2019 Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching Langmuir 35 11016–22
[95] Yoo K J, Moon I Y, Lee H W, Oh Y S, Kim S J, Moon Y H and Kang S H 2021 Evaluation of air layer behavior on patterned PTFE surfaces under underwater environment conditions J. Mech. Sci. Technol. 35 679–87
[96] Zhang Y C et al 2022 Robust underwater air layer retention and restoration on Salvinia-inspired self-grown heterogeneous architectures ACS Nano 16 2730–40
[97] Jiang S J et al 2019 Multifunctional Janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration Adv. Mater. 31 1807507
[98] Wang D H et al 2020 Design of robust superhydrophobic surfaces Nature 582 55–59
[99] Liu Y H, Moevius L, Xu X P, Qian T Z, Yeomans J M and Wang Z K 2014 Pancake bouncing on superhydrophobic surfaces Nat. Phys. 10 515–9
[100] Song M R, Liu Z H, Ma Y J, Dong Z C, Wang Y L and Jiang L 2017 Reducing the contact time using macro anisotropic superhydrophobic surfaces—effect of parallel wire spacing on the drop impact NPG Asia Mater. 9 e415
[101] Young T 1805 An essay on the cohesion of fluids Proc. Trans. R. Soc. 95 65–87
[102] Kota A K, Kwon G and Tuteja A 2014 The design and applications of superomniphobic surfaces NPG Asia Mater. 6 e109
[103] Yong J L, Chen F, Yang Q, Huo J L and Hou X 2017 Superoleophobic surfaces Chem. Soc. Rev. 46 4168–217
[104] Wenzel R N 1936 Resistance of solid surfaces to wetting by water Ind. Eng. Chem. 28 988–94
[105] Cassie A B D and Baxter S 1944 Wettability of porous surfaces Trans. Faraday Soc. 40 546–51
[106] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A and Aizenberg J 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity Nature 477 443–7
[107] Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H and Cohen R E 2007 Designing superoleophobic surfaces Science 318 1618–22
[108] Tuteja A, Choi W, Mabry J M, McKinley G H and Cohen R E 2008 Robust omniphobic surfaces Proc. Natl Acad. Sci. USA 105 18200–5
[109] Ju J, Zheng Y M and Jiang L 2014 Bioinspired one-dimensional materials for directional liquid transport Acc. Chem. Res. 47 2342–52
[110] Zhu H, Huang Y, Lou X and Xia F 2019 Beetle-inspired wettable materials: from fabrications to applications Mater. Today Nano 6 100034
[111] Guo J, Huang W, Guo Z G and Liu W M 2022 Design of a venation-like patterned surface with hybrid wettability for highly efficient fog harvesting Nano Lett. 22 3104–11
[112] Yin K, Du H F, Dong X R, Wang C, Duan J A and He J 2017 A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection Nanoscale 9 14620–6
[113] Gam-Derouich S, Pinson J, Lamouri A, Decorse P, Bellynck S, Herbaut R, Royon L and Mangeney C 2018 Micro-patterned anti-icing coatings with dual hydrophobic/hydrophilic properties J. Mater. Chem. A 6 19353–7
[114] Zhou W L, Wu T, Du Y, Zhang X H, Chen X C, Li J B, Xie H and Qu J P 2023 Efficient fabrication of desert beetle-inspired micro/nano-structures on polypropylene/graphene surface with hybrid wettability, chemical tolerance, and passive anti-icing for quantitative fog harvesting Chem. Eng. J. 453 139784
[115] Li H Y, Mu P, Li J and Wang Q T 2021 Inverse desert beetle-like ZIF-8/PAN composite nanofibrous membrane for highly efficient separation of oil-in-water emulsions J. Mater. Chem. A 9 4167–75
[116] Tao X L, Chen X Y, Cai S, Yan F, Li S Q, Jin S W and Zhu H 2023 A multifunctional heterogeneous superwettable coating for water collection, oil/water separation and oil absorption J. Hazard. Mater. 443 130166
[117] Xu Y, Wang G, Zhu L J, Deng W S, Wang C T, Ren T H, Zhu B K and Zeng Z X 2022 Desert beetle-like microstructures bridged by magnetic Fe3O4 grains for enhancing oil-in-water emulsion separation performance and solar-assisted recyclability of graphene oxide Chem. Eng. J. 427 130904
[118] Liu C C, Xue Y, Chen Y and Zheng Y M 2015 Effective directional self-gathering of drops on spine of cactus with splayed capillary arrays Sci. Rep. 5 17757
[119] Lorenceau ′E and Quéré D 2004 Drops on a conical wire J. Fluid Mech. 510 29–45
[120] Renvoisé P, Bush J W M, Prakash M and Quéré D 2009 Drop propulsion in tapered tubes Europhys. Lett. 86 64003
[121] Chaudhury M K and Whitesides G M 1992 How to make water run uphill Science 256 1539–41
[122] Daniel S, Chaudhury M K and Chen J C 2001 Fast drop movements resulting from the phase change on a gradient surface Science 291 633–6
[123] Nickerl J, Helbig R, Schulz H J, Werner C and Neinhuis C 2013 Diversity and potential correlations to the function of Collembola cuticle structures Zoomorphology 132 183–95
[124] Hensel R, Helbig R, Aland S, Braun H G, Voigt A, Neinhuis C and Werner C 2013 Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures Langmuir 29 1100–12
[125] Liu Y, Shao Z Z and Vollrath F 2005 Relationships between supercontraction and mechanical properties of spider silk Nat. Mater. 4 901–5
[126] Vollrath F 2000 Strength and structure of spiders’ silks Rev. Mol. Biotechnol. 74 67–83
[127] Vollrath F and Edmonds D T 1989 Modulation of the mechanical properties of spider silk by coating with water Nature 340 305–7
[128] Bai H, Ju J, Sun R Z, Chen Y, Zheng Y M and Jiang L 2011 Controlled fabrication and water collection ability of bioinspired artificial spider silks Adv. Mater. 23 3708–11
[129] Tian X L, Chen Y, Zheng Y M, Bai H and Jiang L 2011 Controlling water capture of bioinspired fibers with hump structures Adv. Mater. 23 5486–91
[130] Wang L F, Yang S Y, Wang J, Wang C F and Chen L 2011 Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route Mater. Lett. 65 869–72
[131] Wang Y F, Lai C L, Wang X W, Liu Y, Hu H W, Guo Y J, Ma K K, Fei B and Xin J H 2016 Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property ACS Appl. Mater. Interfaces 8 25612–20
[132] Zhang L W, Liu G, Chen H W, Liu X L, Ran T, Zhang Y, Gan Y and Zhang D Y 2021 Bioinspired unidirectional liquid transport micro-nano structures: a review J. Bionic Eng. 18 1–29
[133] Li C X, Li N, Zhang X S, Dong Z C, Chen H W and Jiang L 2016 Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids Angew. Chem., Int. Ed. 55 14988–92
[134] Xiao X, Li S K, Zhu X D, Xiao X, Zhang C H, Jiang F M, Yu C M and Jiang L 2021 Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater Nano Lett. 21 2117–23
[135] Li C X, Yu C L, Zhou S, Dong Z C and Jiang L 2020 Liquid harvesting and transport on multiscaled curvatures Proc. Natl Acad. Sci. USA 117 23436–42
[136] Zhang S N, Huang J Y, Chen Z and Lai Y K 2017 Bioinspired special wettability surfaces: from fundamental research to water harvesting applications Small 13 1602992
[137] Li Z M, Zhang D Y, Wang D Y, Zhang L W, Feng L and Zhang X Y 2019 A bioinspired flexible film fabricated by surface-tension-assisted replica molding for dynamic control of unidirectional liquid spreading ACS Appl. Mater. Interfaces 11 48505–11
[138] Zhang P F, Chen H W, Li L, Liu H L, Liu G, Zhang L W, Zhang D Y and Jiang L 2017 Bioinspired smart peristome surface for temperature-controlled unidirectional water spreading ACS Appl. Mater. Interfaces 9 5645–52
[139] Zou M M, Zhang Y, Cai Z R, Li C X, Sun Z Y, Yu C L, Dong Z C, Wu L and Song Y L 2021 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications Adv. Mater. 33 2102443
[140] Prum R O, Quinn T and Torres R H 2006 Anatomically diverse butterfly scales all produce structural colours by coherent scattering J. Exp. Biol. 209 748–65
[141] Bixler G D and Bhushan B 2013 Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces Nanoscale 5 7685–710
[142] Tofail S A M, Koumoulos E P, Bandyopadhyay A, Bose S, O’Donoghue L and Charitidis C 2018 Additive manufacturing: scientific and technological challenges, market uptake and opportunities Mater. Today 21 22–37
[143] Keating S and Oxman N 2013 Compound fabrication: a multi-functional robotic platform for digital design and fabrication Robot. Comput. Integr. Manuf. 29 439–48
[144] Apsite I, Biswas A, Li Y Q and Ionov L 2020 Microfabrication using shape-transforming soft materials Adv. Funct. Mater. 30 1908028
[145] Huang S H, Liu P, Mokasdar A and Hou L 2013 Additive manufacturing and its societal impact: a literature review Int. J. Adv. Manuf. Technol. 67 1191–203
[146] Gao W, Zhang Y B, Ramanujan D, Ramani K, Chen Y, Williams C B, Wang C C L, Shin Y C, Zhang S and Zavattieri P D 2015 The status, challenges, and future of additive manufacturing in engineering Comput. Aided Des. 69 65–89
[147] Conner B P, Manogharan G P, Martof A N, Rodomsky L M, Rodomsky C M, Jordan D C and Limperos J W 2014 Making sense of 3D printing: creating a map of additive manufacturing products and services Addit. Manuf. 1–4 64–76
[148] Liu Y, Zhang H, Wang P, He Z Y and Dong G N 2022 3D-printed bionic superhydrophobic surface with petal-like microstructures for droplet manipulation, oil-water separation, and drag reduction Mater. Des. 219 110765
[149] Truby R L and Lewis J A 2016 Printing soft matter in three dimensions Nature 540 371–8
[150] Wallin T J, Pikul J and Shepherd R F 2018 3D printing of soft robotic systems Nat. Rev. Mater. 3 84–100
[151] Wu L, Dong Z C, Cai Z R, Ganapathy T, Fang N X, Li C X, Yu C L, Zhang Y and Song Y L 2020 Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization Nat. Commun. 11 521
[152] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extrem. Manuf. 2 022004
[153] Zhang L B, Wu J B, Hedhili M N, Yang X L and Wang P 2015 Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces J. Mater. Chem. A 3 2844–52
[154] Xie M Z, Zhan Z H, Zhang C Q, Xu W Q, Zhang C, Chen Y P, Dong Z C and Wang Z L 2023 Programmable microfluidics enabled by 3D printed bionic Janus porous matrics for microfluidic logic chips Small 19 2300047
[155] Li N et al 2023 Solar-powered interfacial evaporation and deicing based on a 3D-printed multiscale hierarchical design Small 19 2301474
[156] Amin M, Singh M and Ravi K R 2023 Fabrication of superhydrophobic PLA surfaces by tailoring FDM 3D printing and chemical etching process Appl. Surf. Sci. 626 157217
[157] Lee K M, Park H, Kim J and Chun D M 2019 Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles Appl. Surf. Sci. 467–468 979–91
[158] Wu C J, Wei X Y, Chen Y T, Liu J, Guo C F, Wang Q B and Liang S Y 2022 Surface wettability analysis and preparation of hydrophobic microcylindrical arrays by μ-SLA 3D printing J. Manuf. Process. 83 14–26
[159] Sun J F, Wang W Q, Liu Z, Li B, Xing K F and Yang Z 2020 Study on selective laser melting 316L stainless steel parts with superhydrophobic surface Appl. Surf. Sci. 533 147445
[160] Ling Q, Yang L, Tang S Y, Fan Z T, Liu X W and Jiang W M 2022 Direct ink writing of hierarchically porous Al2O3 matrix composites with enhanced wettability of Al J. Manuf. Process. 84 1580–8
[161] Wang Y L and Willenbacher N 2022 Phase-change-enabled, rapid, high-resolution direct ink writing of soft silicone Adv. Mater. 34 2109240
[162] Li Y R, Mao H C, Hu P, Hermes M, Lim H, Yoon O, Luhar M, Chen Y and Wu W 2019 Bioinspired functional surfaces enabled by multiscale stereolithography Adv. Mater. Technol. 4 1800638
[163] Sun J, Qin X Z, Song Y X, Xu Z Y, Zhang C, Wang W, Wang Z K, Wang B and Wang Z K 2023 Selective liquid directional steering enabled by dual-scale reentrant ratchets Int. J. Extrem. Manuf. 5 025504
[164] Wang X L, Cai X B, Guo Q Q, Zhang T Y, Kobe B and Yang J 2013 i3DP, a robust 3D printing approach enabling genetic post-printing surface modification Chem. Commun. 49 10064–6
[165] Dong Z Q, Vuckovac M, Cui W J, Zhou Q, Ras R H A and Levkin P A 2021 3D printing of superhydrophobic objects with bulk nanostructure Adv. Mater. 33 2106068
[166] Sugioka K and Cheng Y 2014 Ultrafast lasers—reliable tools for advanced materials processing Light Sci. Appl. 3 e149
[167] Yong J L, Fang Y, Chen F, Huo J L, Yang Q, Bian H, Du G Q and Hou X 2016 Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions Appl. Surf. Sci. 389 1148–55
[168] Yong J L, Yang Q, Huo J L, Hou X and Chen F 2022 Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<00 μm) for bubble/gas manipulation Int. J. Extrem. Manuf. 4 015002
[169] Fang Y, Yong J L, Chen F, Huo J L, Yang Q, Zhang J Z and Hou X 2018 Bioinspired fabrication of Bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser Adv. Mater. Interfaces 5 1701245
[170] Ta D V, Dunn A, Wasley T J, Kay R W, Stringer J, Smith P J, Connaughton C and Shephard J D 2015 Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications Appl. Surf. Sci. 357 248–54
[171] Menon D M N, Giardino M and Janner D 2023 Tunable pulsewidth nanosecond laser texturing: from environment friendly superhydrophobic to superamphiphobic surfaces Appl. Surf. Sci. 610 155356
[172] Yang Z, Liu X P and Tian Y L 2018 Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure J. Colloid Interface Sci. 533 268–77
[173] Trdan U, Hocˇevar M and Gregorcˇicˇ P 2017 Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance Corros. Sci. 123 21–26
[174] Lian Z X, Xu J K, Yu Z J, Yu P and Yu H D 2019 A simple two-step approach for the fabrication of bio-inspired superhydrophobic and anisotropic wetting surfaces having corrosion resistance J. Alloys Compd. 793 326–35
[175] Tran N G and Chun D M 2021 Green manufacturing of extreme wettability contrast surfaces with superhydrophilic and superhydrophobic patterns on aluminum J. Mater. Process. Technol. 297 117245
[176] Zhang J J, Yang D H, Rosenkranz A, Zhang J G, Zhao L, Song C W, Yan Y D and Sun T 2019 Laser surface texturing of stainless steel-effect of pulse duration on texture’s morphology and frictional response Adv. Eng. Mater. 21 1801016
[177] Zhao W Q, Mei X S and Yang Z X 2022 Simulation and experimental study on group hole laser ablation on Al2O3 ceramics Ceram. Int. 48 4474–83
[178] Subasi L, Gokler M I and Yaman U 2022 A process modeling approach for micro drilling of aerospace alloys with a waterjet guided laser system Opt. Laser Technol. 148 107682
[179] Shi Y, Cao J and Ehmann K F 2020 Generation of surfaces with isotropic and anisotropic wetting properties by curved water jet-guided laser micromachining J. Micro Nano-Manuf. 8 041001
[180] Shi Y, Jiang Z L, Cao J and Ehmann K F 2019 Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining Appl. Surf. Sci. 500 144286
[181] Ho K H, Newman S T, Rahimifard S and Allen R D 2004 State of the art in wire electrical discharge machining (WEDM) Int. J. Mach. Tools Manuf. 44 1247–59
[182] Bae W G, Song K Y, Rahmawan Y, Chu C N, Kim D, Chung D K and Suh K Y 2012 One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining ACS Appl. Mater. Interfaces 4 3685–91
[183] Yu H D, Lian Z X, Wan Y L, Weng Z K, Xu J K and Yu Z J 2015 Fabrication of durable superamphiphobic aluminum alloy surfaces with anisotropic sliding by HS-WEDM and solution immersion processes Surf. Coat. Technol. 275 112–9
[184] Chen S H, Wang R, Wu F F, Zhang H L, Gao X F and Jiang L 2021 Copper-based high-efficiency condensation heat transfer interface consisting of superhydrophobic hierarchical microgroove and nanocone structure Mater. Today Phys. 19 100407
[185] Zhou C L, Wu X Y, Lu Y J, Wu W, Zhao H and Li L J 2018 Fabrication of hydrophobic Ti3SiC2 surface with micro-grooved structures by wire electrical discharge machining Ceram. Int. 44 18227–34
[186] Lian Z X, Cheng Y, Xu J K, Xu J L, Ren W F, Tian Y L and Yu H D 2023 Green fabrication of anti-friction slippery liquid-infused metallic surface with sub-millimeter-scale asymmetric bump arrays and its application Int. J. Precis. Eng. Man-Green Technol. 10 1281–98
[187] Prasad K K, Roy T, Goud M M, Karar V and Mishra V 2021 Diamond turned hierarchically textured surface for inducing water repellency: analytical model and experimental investigations Int. J. Mech. Sci. 193 106140
[188] Yan J W, Oowada T, Zhou T F and Kuriyagawa T 2009 Precision machining of microstructures on electroless-plated NiP surface for molding glass components J. Mater. Process. Technol. 209 4802–8
[189] Boswell B, Islam M N and Davies I J 2018 A review of micro-mechanical cutting Int. J. Adv. Manuf. Technol. 94 789–806
[190] Yu H D, Zhang X R, Wan Y L, Xu J K, Yu Z J and Li Y Q 2016 Superhydrophobic surface prepared by micromilling and grinding on aluminium alloy Surf. Eng. 32 108–13
[191] Song H, Liu Z Q, Shi Z Y and Cai Y K 2016 Micro-end milling and hydrophobic properties of machined surface for microgroove and microarray J. Mech. Eng. 52 206–12
[192] Musavi S H, Adibi H and Rezaei S M 2022 Development of an innovative grinding process for producing functional surfaces Tribol. Int. 173 107652
[193] Zhang S J, To S, Zhu Z W and Zhang G Q 2016 A review of fly cutting applied to surface generation in ultra-precision machining Int. J. Mach. Tools Manuf. 103 13–27
[194] Yu H Q, Han J G, Li S Y, Han X Z, Liu Y H, Wang J H and Lin J Q 2022 Multi-objective optimization design and performance evaluation of a novel flexure-based tri-axial servo cutting system J. Manuf. Process. 84 1133–49
[195] Zhang G Q, Ma S, Wang J P, Jiang J K, Luo T and Wang H T 2022 Offset-tool-servo diamond end flycutting multi-layer hierarchical microstructures Int. J. Mech. Sci. 233 107645
[196] Kurniawan R, Ali S and Ko T J 2020 Measurement of wettability on rhombohedral pattern fabricated by using 3D-UEVT Measurement 160 107784
[197] Saxena K K, Qian J and Reynaerts D 2018 A review on process capabilities of electrochemical micromachining and its hybrid variants Int. J. Mach. Tools Manuf. 127 28–56
[198] Xu Z Y and Wang Y D 2021 Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances Chin. J. Aeronaut. 34 28–53
[199] Zhan D P, Han L H, Zhang J, He Q F, Tian Z-W and Tian Z-Q 2017 Electrochemical micro/nano-machining: principles and practices Chem. Soc. Rev. 46 1526–44
[200] Yang X L, Song J L, Xu W J, Liu X, Lu Y and Wang Y P 2013 Anisotropic sliding of multiple-level biomimetic rice-leaf surfaces on aluminium substrates Micro Nano Lett. 8 801–4
[201] Lian Z X, Cheng Y, Liu Z M, Cai Q Q, Tao J, Xu J K, Tian Y L and Yu H D 2023 Scalable fabrication of superhydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining Surf. Coat. Technol. 461 129427
[202] Sharma V and Chandraprakash C 2022 Quasi-superhydrophobic microscale two-dimensional phononic crystals of stainless steel 304 J. Appl. Phys. 131 184901
[203] Sato O, Kubo S and Gu Z Z 2009 Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands Acc. Chem. Res. 42 1–10
[204] Feng L, Li S H, Li H J, Zhai J, Song Y L, Jiang L and Zhu D B 2002 Super-hydrophobic surface of aligned polyacrylonitrile nanofibers Angew. Chem., Int. Ed. 41 1269–71
[205] Gong D W, Long J Y, Jiang D F, Fan P X, Zhang H J, Li L and Zhong M L 2016 Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template ACS Appl. Mater. Interfaces 8 17511–8
[206] Song J L, Huang L, Zhao C L, Wu S, Liu H, Lu Y, Deng X, Carmalt C J, Parkin I P and Sun Y W 2019 Robust superhydrophobic conical pillars from syringe needle shape to straight conical pillar shape for droplet pancake bouncing ACS Appl. Mater. Interfaces 11 45345–53
[207] Sung J, Lee H M, Yoon G H, Bae S and So H 2023 One-step fabrication of superhydrophobic surfaces with wettability gradient using three-dimensional printing Int. J. Precis. Eng. Manuf. -Green Technol. 10 85–96
[208] Wang W and Xie Z W 2021 Fabrication of a biomimetic controllable adhesive surface by ultraprecision multistep and layered scribing and casting molding Sci. China Technol. Sci. 64 1814–26
[209] Kang B, Sung J and So H 2021 Realization of superhydrophobic surfaces based on three-dimensional printing technology Int. J. Precis. Eng. Manuf.-Green Technol. 8 47–55
[210] Song J L, Gao M Q, Zhao C L, Lu Y, Huang L, Liu X, Carmalt C J, Deng X and Parkin I P 2017 Large-area fabrication of droplet pancake bouncing surface and control of bouncing state ACS Nano 11 9259–67
[211] Chen L X, Wang X Y, Lu W H, Wu X Q and Li J H 2016 Molecular imprinting: perspectives and applications Chem. Soc. Rev. 45 2137–211
[212] Guo L J 2004 Recent progress in nanoimprint technology and its applications J. Phys. D: Appl. Phys. 37 R123–41
[213] Becker H and Heim U 2000 Hot embossing as a method for the fabrication of polymer high aspect ratio structures Sens. Actuators A 83 130–5
[214] Heckele M, Bacher W and Müller K D 1998 Hot embossing—the molding technique for plastic microstructures Microsyst. Technol. 4 122–4
[215] Yi P Y, Wu H, Zhang C P, Peng L F and Lai X M 2015 Roll-to-roll UV imprinting lithography for micro/nanostructures J. Vac. Sci. Technol. B 33 060801
[216] Campos L M, Meinel I, Guino R G, Schierhorn M, Gupta N, Stucky G D and Hawker C J 2008 Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry Adv. Mater. 20 3728–33
[217] van de Groep J, Spinelli P and Polman A 2015 Single-step soft-imprinted large-area nanopatterned antireflection coating Nano Lett. 15 4223–8
[218] Moon I Y, Kim B H, Lee H W, Oh Y S, Kim J H and Kang S H 2020 Superhydrophobic polymer surface with hierarchical patterns fabricated in hot imprinting process Int. J. Precis. Eng. Manuf.-Green Technol. 7 493–503
[219] Li A, Li H Z, Li Z, Zhao Z P, Li K X, Li M Z and Song Y L 2020 Programmable droplet manipulation by a magnetic-actuated robot Sci. Adv. 6 eaay5808
[220] You I, Kang S M, Lee S, Cho Y O, Kim J B, Lee S B, Nam Y S and Lee H 2012 Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device Angew. Chem., Int. Ed. 51 6126–30
[221] Dai H Y, Gao C, Sun J H, Li C X, Li N, Wu L, Dong Z C and Jiang L 2019 Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface Adv. Mater. 31 1905449
[222] Sun Q Q et al 2019 Surface charge printing for programmed droplet transport Nat. Mater. 18 936–41
[223] Xu W H, Jin Y K, Li W B, Song Y X, Gao S W, Zhang B P, Wang L L, Cui M M, Yan X T and Wang Z K 2022 Triboelectric wetting for continuous droplet transport Sci. Adv. 8 eade2085
[224] Jin Y K, Xu W H, Zhang H H, Li R R, Sun J, Yang S Y, Liu M J, Mao H Y and Wang Z K 2022 Electrostatic tweezer for droplet manipulation Proc. Natl Acad. Sci. USA 119 e2105459119
[225] Wang F, Liu M J, Liu C, Zhao Q L, Wang T, Wang Z A K and Du X M 2022 Light-induced charged slippery surfaces Sci. Adv. 8 eabp9369
[226] Sun L Y, Bian F K, Wang Y, Wang Y T, Zhang X X and Zhao Y J 2020 Bioinspired programmable wettability arrays for droplets manipulation Proc. Natl Acad. Sci. USA 117 4527–32
[227] Zhang J Q, Wang X J, Wang Z Y, Pan S F, Yi B, Ai L Q, Gao J, Mugele F and Yao X 2021 Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface Nat. Commun. 12 7136
[228] Jing X S, Chen H W, Zhang L W, Zhao S, Wang Y, Wang Z L L and Zhou Y 2023 Accurate magneto-driven multi-dimensional droplet manipulation Adv. Funct. Mater. 33 2210883
[229] Nasirimarekani V, Benito-Lopez F and Basabe-Desmonts L 2021 Tunable superparamagnetic ring (tSPRing) for droplet manipulation Adv. Funct. Mater. 31 2100178
[230] Zhang Y Y et al 2022 A biocompatible vibration-actuated omni-droplets rectifier with large volume range fabricated by femtosecond laser Adv. Mater. 34 2108567
[231] Song Y G et al 2020 Cross-species bioinspired anisotropic surfaces for active droplet transportation driven by unidirectional microcolumn waves ACS Appl. Mater. Interfaces 12 42264–73
[232] Cao M Y, Jin X, Peng Y, Yu C M, Li K, Liu K S and Jiang L 2017 Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia Adv. Mater. 29 1606869
[233] Lee S H, Seong M, Kwak M K, Ko H, Kang M, Park H W, Kang S M and Jeong H E 2018 Tunable multimodal drop bouncing dynamics and anti-icing performance of a magnetically responsive hair array ACS Nano 12 10693–702
[234] Jiang S J et al 2020 Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer Nano Lett. 20 7519–29
[235] Shao K X, Jiang S J, Hu Y L, Zhang Y Y, Li C Z, Zhang Y X, Li J W, Wu D and Chu J R 2022 Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport Adv. Funct. Mater. 32 2205831
[236] Lv C J, Chen C, Chuang Y C, Tseng F G, Yin Y J, Grey F and Zheng Q S 2014 Substrate curvature gradient drives rapid droplet motion Phys. Rev. Lett. 113 026101
[237] Bird J C, Dhiman R, Kwon H M and Varanasi K K 2013 Reducing the contact time of a bouncing drop Nature 503 385–8
[238] Li H Z, Fang W, Li Y A, Yang Q, Li M Z, Li Q Y, Feng X Q and Song Y L 2019 Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces Nat. Commun. 10 950
[239] Tao R, Liang G Q, Dou B H, Wu J, Li B and Hao C L 2022 Oblique pancake bouncing Cell Rep. Phys. Sci. 3 100721
[240] Zhang X X, Sun L Y, Wang Y, Bian F K, Wang Y T and Zhao Y J 2019 Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping Proc. Natl Acad. Sci. USA 116 20863–8
[241] Bai H Y, Wang X S, Li Z, Wen H Y, Yang Y F, Li M Q and Cao M Y 2023 Improved liquid collection on a dual-asymmetric superhydrophilic origami Adv. Mater. 35 2211596
[242] Li D K, Fan Y F, Han G C and Guo Z G 2021 Multibioinspired Janus membranes with superwettable performance for unidirectional transportation and fog collection Chem. Eng. J. 404 126515
[243] Zhang M, Zheng Z Y, Zhu Y Q, Zhu Z Q, Si T and Xu R X 2022 Combinational biomimetic microfibers for high-efficiency water collection Chem. Eng. J. 433 134495
[244] Liu H Y, Wang Y Y, Yin W, Yuan H, Guo T and Meng T 2022 Highly efficient water harvesting of bioinspired spindle-knotted microfibers with continuous hollow channels J. Mater. Chem. A 10 7130–7
[245] Shi Y, Ilic O, Atwater H A and Greer J R 2021 All-day fresh water harvesting by microstructured hydrogel membranes Nat. Commun. 12 2797
[246] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mari?nas B J and Mayes A M 2008 Science and technology for water purification in the coming decades Nature 452 301–10
[247] Lin Q Q, Zeng G Y, Pu S Y, Yan G L, Luo J Q, Wan Y H and Zhao Z Y 2022 A dual regulation strategy for MXene-based composite membrane to achieve photocatalytic self-cleaning properties and multi-functional applications Chem. Eng. J. 443 136335
[248] Gupta R K, Dunderdale G J, England M W and Hozumi A 2017 Oil/water separation techniques: a review of recent progresses and future directions J. Mater. Chem. A 5 16025–58
[249] Yang Y, Ren Z Y, Zhou C H, Lin Y X, Hou L X, Shi L W and Zhong S C 2023 3D-printed robust dual superlyophobic Ti-based porous structure for switchable oil/water emulsion separations Adv. Funct. Mater. 33 2212262
[250] Shi Z et al 2023 Constructing superhydrophobicity by self-assembly of SiO2@polydopamine core-shell nanospheres with robust oil-water separation efficiency and anti-corrosion performance Adv. Funct. Mater. 33 2213042
[251] Li C X, Wu L, Yu C L, Dong Z C and Jiang L 2017 Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops Angew. Chem., Int. Ed. 56 13623–8
[252] Chen Y, Quan Z J, Song W D, Wang Z, Li B, Mu Z Z, Niu S C, Zhang J Q, Han Z W and Ren L Q 2022 Hierarchically structured biomimetic membrane with mechanically/chemically durability and special wettability for highly efficient oil-water separation Sep. Purif. Technol. 300 121860
[253] Qin Z L, Xiang H Q, Liu J G and Zeng X Y 2019 High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling Mater. Des. 184 108200
[254] Bae W G, Kim D, Song K Y, Jeong H E and Chu C N 2015 Engineering stainless steel surface via wire electrical discharge machining for controlling the wettability Surf. Coat. Technol. 275 316–23
[255] Tian G Z, Fan D L, Feng X M and Zhou H G 2021 Thriving artificial underwater drag-reduction materials inspired from aquatic animals: progresses and challenges RSC Adv. 11 3399–428
[256] Lee C, Choi C H and Kim C J 2016 Superhydrophobic drag reduction in laminar flows: a critical review Exp. Fluids 57 176
[257] Qin L G, Hafezi M, Yang H, Dong G N and Zhang Y L 2019 Constructing a dual-function surface by microcasting and nanospraying for efficient drag reduction and potential antifouling capabilities Micromachines 10 490
[258] Abolghasemibizaki M, Robertson C J, Fergusson C P, McMasters R L and Mohammadi R 2018 Rolling viscous drops on a non-wettable surface containing both microand macro-scale roughness Phys. Fluids 30 023105
[259] Kim M, Yoo S, Jeong H E and Kwak M K 2022 Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering Nat. Commun. 13 5181
[260] Wang Y H, Zhang Z B, Xu J K and Yu H D 2021 One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface Surf. Coat. Technol. 409 126801
[261] Rong W T, Zhang H F, Zhang T J, Mao Z G, Liu X W and Song K G 2021 Drag reduction using lubricant-impregnated anisotropic slippery surfaces inspired by bionic fish scale surfaces containing micro-/nanostructured arrays Adv. Eng. Mater. 23 2000821
[262] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T and Aizenberg J 2010 Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets ACS Nano 4 7699–707
[263] Chen H Y, Wang F F, Fan H Z, Hong R Y and Li W H 2021 Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research Chem. Eng. J. 408 127343
[264] Chen C H, Tian Z, Luo X, Jiang G C, Hu X Y, Wang L Z, Peng R, Zhang H J and Zhong M L 2022 Cauliflower-like micro-nano structured superhydrophobic surfaces for durable anti-icing and photothermal de-icing Chem. Eng. J. 450 137936
[265] Wang L Z, Jiang G C, Tian Z, Chen C H, Hu X Y, Peng R, Zhang H J, Fan P X and Zhong M L 2023 Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell? Mater. Horiz. 10 209–20
[266] Lu C G, Liu C, Yuan Z C, Zhan H Y, Zhao D Y, Zhao L, Feng S L and Liu Y H 2022 Gradient droplet distribution promotes spontaneous formation of frost-free zone Commun. Mater. 3 80
[267] Ma C, Chen L, Wang L, Tong W, Chu C L, Yuan Z P, Lv C J and Zheng Q S 2022 Condensation droplet sieve Nat. Commun. 13 5381
[268] Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J and Wang E N 2013 Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces Nano Lett. 13 179–87
[269] Mulroe D M, Srijanto B R, Ahmadi S F, Collier C P and Boreyko J B 2017 Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation ACS Nano 11 8499–510
[270] Li Z L, Li W W, Xun M and Yuan M C 2023 WEDM one-step preparation of miniature heat sink with superhydrophobic and efficient heat transfer performance Int. J. Adv. Manuf. Technol. 127 1873–85
[271] Du J Y, Li Y Z, Wang X, Wu X X and Min Q 2023 Dynamics and heat transfer of water droplets impacting on heated surfaces: the role of surface structures in Leidenfrost point Int. J. Heat Mass Transfer 212 124241
[272] Wang X L, Xu J, Jiang H P, Liu Y D, Li X R, Shan D B and Guo B 2023 Achieving robust and enhanced pool boiling heat transfer using micro-nano multiscale structures Appl. Therm. Eng. 227 120441
[273] Tang Y, Yang X L, Wang L G, Li Y M and Zhu D 2023 Dropwise condensate comb for enhanced heat transfer ACS Appl. Mater. Interfaces 15 21549–61
[274] Wan Z P, Hu X S, Wang X W and He Z C 2023 Experimental study on the boiling/condensation heat transfer performance of a finned tube with a hydrophilic/ hydrophobic surface Appl. Therm. Eng. 229 120494
[275] Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L and Zhu D B 2004 A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water Angew. Chem., Int. Ed. 43 2012–4
[276] Kim D H, Kim S, Park S R, Fang N X and Cho Y T 2021 Shape-deformed mushroom-like reentrant structures for robust liquid-repellent surfaces ACS Appl. Mater. Interfaces 13 33618–26
[277] Zhao Y, Qin M L, Wang A J and Kim D 2013 Bioinspired superhydrophobic carbonaceous hairy microstructures with strong water adhesion and high gas retaining capability Adv. Mater. 25 4561–5
[278] Han X, Liu J N, Wang M Y, Upmanyu M and Wang H L 2022 Second-level microgroove convexity is critical for air plastron restoration on immersed hierarchical superhydrophobic surfaces ACS Appl. Mater. Interfaces 14 52524–34
[279] Wang J N, Liu Y Q, Zhang Y L, Feng J and Sun H B 2018 Pneumatic smart surfaces with rapidly switchable dominant and latent superhydrophobicity NPG Asia Mater. 10 e470
[280] Wang H J, Zhang Z H, Zheng J, Zhao J, Liang Y H, Li X J and Ren L Q 2021 Multifunctional superhydrophobic surface with dynamically controllable micro/nanostructures for droplet manipulation and friction control Chem. Eng. J. 417 127944
[281] Jiao Y L, Li C Z, Ji J W, Wang Z C, Tao T T, Zhang T and Liu K 2021 Femtosecond laser-induced shape memory polymer micropillar with tunable wettability and reversible adhesion for underwater oil droplet lossless transfer Appl. Phys. Lett. 118 033701
[282] Bai X, Yang Q, Fang Y, Yong J L, Bai Y K, Zhang J W, Hou X and Chen F 2020 Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond laser-structured shape-memory polymer for droplet manipulation Chem. Eng. J. 400 125930
[283] Zhang X H, Liu J, Xia M and Hu Y W 2023 Laser shock peening enables 3D gradient metal structures: a case study on manufacturing self-armored hydrophobic surfaces Int. J. Mach. Tools Manuf. 185 103993
[284] Huovinen E, Takkunen L, Korpela T, Suvanto M, Pakkanen T T and Pakkanen T A 2014 Mechanically robust superhydrophobic polymer surfaces based on protective micropillars Langmuir 30 1435–43
[285] Verho T, Bower C, Andrew P, Franssila S, Ikkala O and Ras R H A 2011 Mechanically durable superhydrophobic surfaces Adv. Mater. 23 673–8
[286] Jiao Z B et al 2020 Underwater writable and heat-insulated paper with robust fluorine-free superhydrophobic coatings Nanoscale 12 8536–45
[287] Chen F Z, Wang Y Q, Tian Y L, Zhang D W, Song J L, Crick C R, Carmalt C J, Parkin I P and Lu Y 2022 Robust and durable liquid-repellent surfaces Chem. Soc. Rev. 51 8476–583