[1] Doumanidis C C, Al Kaabi H A, Alzaabi A S M et al. Brownian-like kinematics of ball milling for particulate structural modeling[J]. Powder Technology, 301, 1077-1084(2016).
[2] Wadhwa N, Berg H C. Bacterial motility: machinery and mechanisms[J]. Nature Reviews Microbiology, 20, 161-173(2022).
[3] Kaminski Schierle G S, van de Linde S, Erdelyi M et al. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging[J]. Journal of the American Chemical Society, 133, 12902-12905(2011).
[4] Chen X, Wang Y, Zhang X W et al. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions[J]. Biomaterials Science, 9, 5484-5496(2021).
[5] Culley S, Tosheva K L, Matos Pereira P et al. SRRF: Universal live-cell super-resolution microscopy[J]. The International Journal of Biochemistry & Cell Biology, 101, 74-79(2018).
[6] Prieve D C, Bike S G, Frej N A. Brownian motion of a single microscopic sphere in a colloidal force field[J]. Faraday Discussions of the Chemical Society, 90, 209-222(1990).
[7] Frymier P D, Ford R M, Berg H C et al. Three-dimensional tracking of motile bacteria near a solid planar surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 92, 6195-6199(1995).
[8] Lauga E, DiLuzio W R, Whitesides G M et al. Swimming in circles: motion of bacteria near solid boundaries[J]. Biophysical Journal, 90, 400-412(2006).
[9] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[10] Goodman J W, Sutton P. Introduction to Fourier optics[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 8, 1095(1996).
[11] Young G, Kukura P. Interferometric scattering microscopy[J]. Annual Review of Physical Chemistry, 70, 301-322(2019).
[12] Huang G, Tian W Z, Qi M et al. Improving axial resolution for holographic tracking of colloids and bacteria over a wide depth of field by optimizing different factors[J]. Optics Express, 26, 9920-9930(2018).
[13] Memmolo P, Miccio L, Paturzo M et al. Recent advances in holographic 3D particle tracking[J]. Advances in Optics and Photonics, 7, 713-755(2015).
[14] Lu F X, Zhou B, Zhang Y et al. Real-time 3D scene reconstruction with dynamically moving object using a single depth camera[J]. The Visual Computer, 34, 753-763(2018).
[15] Huang S J, Wang W P, Zeng J Z et al. Measurement of the refractive index of solutions based on digital holographic microscopy[J]. Journal of Optics, 20, 015704(2018).
[16] Dubois F, Yourassowsky C, Monnom O et al. Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration[J]. Journal of Biomedical Optics, 11, 054032(2006).
[17] Shen G X, Zhang Y G, Cao X G et al. Research advances in digital holography particle image velocimetry[J]. Advances in Mechanics, 37, 563-574(2007).
[18] Pu S L, Lebrun D, Wang Q H et al. Application of digital holography to circle flow bed boiler measurement[J]. Frontiers of Energy and Power Engineering in China, 1, 218-222(2007).
[19] Panahi M, Jamali R, Rad V F et al. 3D monitoring of the surface slippage effect on micro-particle sedimentation by digital holographic microscopy[J]. Scientific Reports, 11, 1-11(2021).
[20] Chen N, Wang C L, Heidrich W. Snapshot space-time holographic 3D particle tracking velocimetry[J]. Laser & Photonics Reviews, 15, 2100008(2021).
[21] Thornton K L, Findlay R C, Walrad P B et al. Investigating the swimming of microbial pathogens using digital holography[J]. Advances in Experimental Medicine and Biology, 915, 17-32(2016).
[22] Xia H, Picart P, Montresor S et al. Mechanical behavior of CAD/CAM occlusal ceramic reconstruction assessed by digital color holography[J]. Dental Materials, 34, 1222-1234(2018).
[23] Huang G. Axial localization of digital holographic microscopy and its applications[D], 2-6(2020).
[24] Zhang X, Meng X F, Yin Y K et al. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing[J]. Optics and Lasers in Engineering, 100, 118-123(2018).
[25] Kakue T, Yonesaka R, Tahara T et al. High-speed phase imaging by parallel phase-shifting digital holography[J]. Optics Letters, 36, 4131-4133(2011).
[26] Crane R. Interference phase measurement[J]. SPIE Milestone Series, 28, 284-288(1991).
[27] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America A, 52, 1123-1130(1962).
[28] Arsenault H H, April G. Properties of speckle integrated with a finite aperture and logarithmically transformed[J]. Journal of the Optical Society of America A, 66, 1160-1163(1976).
[29] Niu R, Tian A L, Wang D S et al. Speckle noise suppression of digital holography measuring system[J]. Laser & Optoelectronics Progress, 59, 1609002(2022).
[30] Massatsch P, Charrière F, Cuche E et al. Time-domain optical coherence tomography with digital holographic microscopy[J]. Applied Optics, 44, 1806-1812(2005).
[31] Wang Z, Millet L, Mir M et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011).
[32] Dubois F, Requena M L N, Minetti C et al. Partial spatial coherence effects in digital holographic microscopy with a laser source[J]. Applied Optics, 43, 1131-1139(2004).
[33] Kemper B, Stürwald S, Remmersmann C et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 46, 499-507(2008).
[34] Guo R L, Barnea I, Shaked N T. Low-coherence shearing interferometry with constant off-axis angle[J]. Frontiers in Physics, 8, 611679(2021).
[35] Kim M K. Principles and techniques of digital holographic microscopy[J]. SPIE Reviews, 1, 018005(2010).
[36] Schnars U, ptner W P OJ. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 13, R85-R101(2002).
[37] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).
[38] Zhang F C, Pedrini G, Osten W. Aberration-free reconstruction algorithm for high numerical aperture digital hologram[J]. Proceedings of SPIE, 6188, 618814(2006).
[39] Zhang F C, Pedrini G, Osten W. Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution[J]. Optics Letters, 31, 1633-1635(2006).
[40] Mann C J, Kim M K. Quantitative phase-contrast microscopy by angular spectrum digital holography[J]. Proceedings of SPIE, 6090, 60900B(2006).
[41] De Nicola S, Finizio A, Pierattini G et al. Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes[J]. Optics Express, 13, 9935-9940(2005).
[42] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).
[43] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 3, 27-29(1978).
[44] Ryle J P, McDonnell S, Glennon B et al. Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis[J]. Applied Optics, 52, C78-C87(2013).
[45] Yang J, Wu X C, Wu Y C et al. Study on extending the depth of field in reconstructed image for a micro digital hologram[J]. Acta Physica Sinica, 64, 114209(2015).
[46] Barak N, Kumari V, Sheoran G. Automated extended depth of focus digital holographic microscopy using electrically tunable lens[J]. Journal of Optics, 22, 125602(2020).
[47] Sheng J, Malkiel E, Katz J. Digital holographic microscope for measuring three-dimensional particle distributions and motions[J]. Applied Optics, 45, 3893-3901(2006).
[48] İlhan H A, Doğar M, Özcan M. Digital holographic microscopy and focusing methods based on image sharpness[J]. Journal of Microscopy, 255, 138-149(2014).
[49] Dubois F, Schockaert C, Callens N et al. Focus plane detection criteria in digital holography microscopy by amplitude analysis[J]. Optics Express, 14, 5895-5908(2006).
[50] Dubois F, El Mallahi A, Dohet-Eraly J et al. Refocus criterion for both phase and amplitude objects in digital holographic microscopy[J]. Optics Letters, 39, 4286-4289(2014).
[51] Gao P, Yao B L, Rupp R et al. Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy[J]. Optics Letters, 37, 1172-1174(2012).
[52] Gao P, Yao B L, Min J W et al. Autofocusing of digital holographic microscopy based on off-axis illuminations[J]. Optics Letters, 37, 3630-3632(2012).
[53] Fish J, Scrimgeour J. Fast weighted centroid algorithm for single particle localization near the information limit[J]. Applied Optics, 54, 6360-6366(2015).
[54] Anthony S M, Granick S. Image analysis with rapid and accurate two-dimensional Gaussian fitting[J]. Langmuir, 25, 8152-8160(2009).
[55] Parthasarathy R. Rapid, accurate particle tracking by calculation of radial symmetry centers[J]. Nature Methods, 9, 724-726(2012).
[56] Tischler N, Stark J, Zambrana-Puyalto X et al. All-optical self-referenced transverse position sensing with subnanometer precision[J]. ACS Photonics, 5, 3628-3633(2018).
[57] Huang Y F, Zhuo G Y, Chou C Y et al. Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells[J]. ACS Nano, 11, 2575-2585(2017).
[58] Lai S C, Kemper B, von Bally G. Off-axis reconstruction of in-line holograms for twin-image elimination[J]. Optics Communications, 169, 37-43(1999).
[59] Kim T, Poon T C, Indebetouw G J M. Depth detection and image recovery in remote sensing by optical scanning holography[J]. Optical Engineering, 41, 1331-1338(2002).
[60] Cheong F C, Krishnatreya B J, Grier D G. Strategies for three-dimensional particle tracking with holographic video microscopy[J]. Optics Express, 18, 13563-13573(2010).
[61] Qi M, Song Q L, Zhao J P et al. Three-dimensional bacterial behavior near dynamic surfaces formed by degradable polymers[J]. Langmuir, 33, 13098-13104(2017).
[62] Wang G C, Huang G, Gong X J et al. Method for 3D tracking behaviors of interplaying bacteria individuals[J]. Optics Express, 28, 28060-28071(2020).
[63] Crocker J C, Grier D G. Methods of digital video microscopy for colloidal studies[J]. Journal of Colloid and Interface Science, 179, 298-310(1996).
[64] Qi M. Study of three-dimensional dynamic adhesion behavior of bacteria on polymeric surfaces[D], 34-38(2020).
[65] Peng Q M, Zhou X, Wang Z et al. Three-dimensional bacterial motions near a surface investigated by digital holographic microscopy: effect of surface stiffness[J]. Langmuir, 35, 12257-12263(2019).
[66] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 18, 1527-1554(2006).
[67] Jaferzadeh K, Hwang S H, Moon I et al. No-search focus prediction at the single cell level in digital holographic imaging with deep convolutional neural network[J]. Biomedical Optics Express, 10, 4276-4289(2019).
[68] Spoorthi G E, Gorthi S, Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 26, 54-58(2019).
[69] Rivenson Y, Zhang Y B, Günaydın H et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 7, 17141(2018).
[70] Wu Y C, Rivenson Y, Zhang Y B et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).
[71] Zhang G, Guan T, Shen Z Y et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express, 26, 19388-19405(2018).
[72] Yevick A, Hannel M, Grier D G. Machine-learning approach to holographic particle characterization[J]. Optics Express, 22, 26884-26890(2014).
[73] Rivenson Y, Wu Y C, Ozcan A. Deep learning in holography and coherent imaging[J]. Light: Science & Applications, 8, 1-8(2019).
[74] Pitkäaho T, Manninen A, Naughton T J. Focus classification in digital holographic microscopy using deep convolutional neural networks[J]. Proceedings of SPIE, 10414, 104140K(2017).
[75] Lee S J, Yoon G Y, Go T. Deep learning-based accurate and rapid tracking of 3D positional information of microparticles using digital holographic microscopy[J]. Experiments in Fluids, 60, 1-10(2019).
[76] Wang K Q, Dou J Z, Qian K M et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters, 44, 4765-4768(2019).
[77] Wang K Q, Qian K M, Di J L et al. Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction[J]. Optics Letters, 45, 4220-4223(2020).
[78] Shao S Y, Mallery K, Kumar S S et al. Machine learning holography for 3D particle field imaging[J]. Optics Express, 28, 2987-2999(2020).
[79] Langehanenberg P, Kemper B, Dirksen D et al. Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging[J]. Applied Optics, 47, D176-D182(2008).
[80] Kusumi A, Sako Y, Yamamoto M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells[J]. Biophysical Journal, 65, 2021-2040(1993).
[81] Yildiz A, Forkey J N, McKinney S A et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization[J]. Science, 300, 2061-2065(2003).
[82] Ewers H, Smith A E, Sbalzarini I F et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 15110-15115(2005).
[83] Satake S I, Unno N, Nakata S et al. 3D measurement of the position of gold particles via evanescent digital holographic particle tracking velocimetry[J]. Measurement Science and Technology, 27, 084009(2016).
[84] Mahmoodabadi R G, Taylor R W, Kaller M et al. Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization[J]. Optics Express, 28, 25969-25988(2020).
[85] Wu H M, Lin Y H, Yen T C et al. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking[J]. Scientific Reports, 6, 1-10(2016).
[86] Xu W, Jericho M H, Meinertzhagen I A et al. Digital in-line holography of microspheres[J]. Applied Optics, 41, 5367-5375(2002).
[87] Liu J, Liang X, Wang G C et al. Three-dimensional dynamic characterization of microbubbles[J]. Water Purification Technology, 40, 67-74, 126(2021).
[88] Tian L, Loomis N, Domínguez-Caballero J A et al. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography[J]. Applied Optics, 49, 1549-1554(2010).
[89] Zegers R P C, Luijten C C M, Dam N J et al. Pre- and post-injection flow characterization in a heavy-duty diesel engine using high-speed PIV[J]. Experiments in Fluids, 53, 731-746(2012).
[90] Trolinger J D, Belz R A, Farmer W M. Holographic techniques for the study of dynamic particle fields[J]. Applied Optics, 8, 957-961(1969).
[91] Yu L, Wang Y, Wang Y et al. Phase image correlation spectroscopy for detecting microfluidic dynamics[J]. Applied Optics, 61, 5944-5950(2022).
[92] Meng H, Hussain F. Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence[J]. Fluid Dynamics Research, 8, 33-52(1991).
[93] Meng H, Estevadeordal J, Gogineni S et al. Holographic flow visualization as a tool for studying three-dimensional coherent structures and instabilities[J]. Journal of Visualization, 1, 133-144(1998).
[94] Pu Y, Meng H. Four-dimensional dynamic flow measurement by holographic particle image velocimetry[J]. Applied Optics, 44, 7697-7708(2005).
[95] Meng H, Pan G, Pu Y et al. Holographic particle image velocimetry: from film to digital recording[J]. Measurement Science and Technology, 15, 673-685(2004).
[96] Meng H, Anderson W L, Hussain F et al. Intrinsic speckle noise in in-line particle holography[J]. Journal of the Optical Society of America A, 10, 2046-2058(1993).
[97] Pu Y, Meng H. An advanced off-axis holographic particle image velocimetry (HPIV) system[J]. Experiments in Fluids, 29, 184-197(2000).
[98] de Jong J, Salazar J P L C, Woodward S H et al. Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging[J]. International Journal of Multiphase Flow, 36, 324-332(2010).
[99] Cao L J, Pan G, de Jong J et al. Hybrid digital holographic imaging system for three-dimensional dense particle field measurement[J]. Applied Optics, 47, 4501-4508(2008).
[100] Meng H, Hussain F. In-line recording and off-axis viewing technique for holographic particle velocimetry[J]. Applied Optics, 34, 1827-1840(1995).
[101] Gusnaniar N, van der Mei H C, Qu W W et al. Physico-chemistry of bacterial transmission versus adhesion[J]. Advances in Colloid and Interface Science, 250, 15-24(2017).
[102] Beaussart A, Feuillie C, El-Kirat-Chatel S. The microbial adhesive arsenal deciphered by atomic force microscopy[J]. Nanoscale, 12, 23885-23896(2020).
[103] Wilson L, Zhang R J. 3D Localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation[J]. Optics Express, 20, 16735-16744(2012).
[104] Cheong F C, Wong C C, Gao Y F et al. Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy[J]. Biophysical Journal, 108, 1248-1256(2015).
[105] Qi M, Gong X J, Wu B et al. Landing dynamics of swimming bacteria on a polymeric surface: effect of surface properties[J]. Langmuir, 33, 3525-3533(2017).
[106] Zhou X, Qi M, Huang G et al. Alternating electric fields induce a period-dependent motion of Escherichia coli in three-dimension near a conductive surface[J]. Biointerphases, 14, 011005(2019).
[107] Yuan S, Qi M, Peng Q M et al. Adaptive behaviors of planktonic Pseudomonas aeruginosa in response to the surface-deposited dead siblings[J]. Colloids and Surfaces B: Biointerfaces, 197, 111408(2021).
[108] Zhang M L, Ma Y, Wang Y et al. Polarization grating based on diffraction phase microscopy for quantitative phase imaging of paramecia[J]. Optics Express, 28, 29775-29787(2020).
[109] Knox C. Holographic microscopy as a technique for recording dynamic microscopic subjects[J]. Science, 153, 989-990(1966).
[110] Malkiel E, Alquaddoomi O, Katz J. Measurements of plankton distribution in the ocean using submersible holography[J]. Measurement Science & Technology, 10, 1142-1152(1999).
[111] Hobson P R, Watson J. The principles and practice of holographic recording of plankton[J]. Journal of Optics A: Pure and Applied Optics, 4, S34-S49(2002).
[112] Bochdansky A B, Jericho M H, Herndl G J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m[J]. Limnology and Oceanography: Methods, 11, 28-40(2013).
[113] Talapatra S, Hong J, McFarland M et al. Characterization of biophysical interactions in the water column using in situ digital holography[J]. Marine Ecology Progress Series, 473, 29-51(2013).
[114] Heydt M, Pettitt M E, Cao X et al. Settlement behavior of zoospores of Ulva linza during surface selection studied by digital holographic microscopy[J]. Biointerphases, 7, 33(2012).
[115] Sheng J, Malkiel E, Katz J et al. Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 17512-17517(2007).
[116] Krmpot A J, Nikolić S N, Oasa S et al. Functional fluorescence microscopy imaging: quantitative scanning-free confocal fluorescence microscopy for the characterization of fast dynamic processes in live cells[J]. Analytical Chemistry, 91, 11129-11137(2019).
[117] Choi Y S, Lee S J. Inertial migration of erythrocytes in low-viscosity and high-shear rate microtube flows: application of simple digital in-line holographic microscopy[J]. Journal of Biomechanics, 45, 2706-2709(2012).
[118] Rastogi V, Agarwal S, Dubey S K et al. Design and development of volume phase holographic grating based digital holographic interferometer for label-free quantitative cell imaging[J]. Applied Optics, 59, 3773-3783(2020).
[119] Su T W, Choi I, Feng J W et al. Sperm trajectories form chiral ribbons[J]. Scientific Reports, 3, 1-8(2013).
[120] Huang G, Sun L, Jin X Q et al. Microscale topographic surfaces modulate three-dimensional migration of human spermatozoa[J]. Colloids and Surfaces B: Biointerfaces, 193, 111096(2020).