Yan Wang, Jichuan Xing, Yaozhi Wang. Coal and Gangue Recognition Method Based on Dual-Channel Pseudocolor Image by Lidar[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0437005

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 61, Issue 4, 0437005 (2024)

Fig. 1. Example maps of production environment and industrial camera data. (a) Data collection environment; (b) data acquisition by industrial camera

Fig. 2. Schematic diagram of acquisition system

Fig. 3. Point cloud images. (a) Distance point cloud; (b) intensity point cloud

Fig. 4. Image of coal and gangue strength. (a) Coal; (b) gangue

Fig. 5. Example of distance point cloud

Fig. 6. Process of image preprocessing

Fig. 7. Background denoising. (a) Before removal; (b) after removal

Fig. 8. Point cloud image generation process. (a) Original point cloud map; (b) vertical view of point cloud; (c) real point cloud projection; (d) two dimension intensity pixel image

Fig. 9. Dual channel pseudo color image generation process. (a) Intensity point cloud; (b) distance point cloud; (c) dual channel pseudo color image

Fig. 10. DenseNet-121 network structure

Fig. 11. Dual channel pseudo color image used in the experiment. (a) Coal; (b) gangue

Fig. 12. Training accuracy and training loss curves. (a) (d) DenseNet-40; (b) (e) DenseNet-121; (c) (f) DenseNet-201
|
Table 1. Parameters of LMS4000
|
Table 2. Parameters of DenseNet-40 and DenseN-121
|
Table 3. FLOPs and parameter quantity of common models
|
Table 4. Cross validation average results

Set citation alerts for the article
Please enter your email address