
- Photonics Research
- Vol. 9, Issue 7, 1255 (2021)
Abstract
1. INTRODUCTION
Mechanical strain engineering has been an active research topic for decades to alter the material properties of single-crystalline semiconductors, including electronic bandgaps [1,2], carrier effective mass [3,4], and optical nonlinearity [5,6], for intended electronic and photonic applications. For the bandgap engineering to photonic applications, a substantial strain magnitude with spatially uniform distribution is in most cases essential to the materials of interest. This is to create a consistent bandgap profile with wide tunability and coverage throughout the optical mode span (usually in
In this work, we overcome the dilemma by adopting recessed trenches beside the material structure to be strained, together with the use of sidewall silicon nitride (
2. DEVICE DESIGN AND FABRICATION
Figure 1(a) illustrates a cross-sectional schematic of a CMOS-integrated GOI photodiode employing the recessed
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
Figure 1.Recess-strained GOI photodiodes for PICs. (a) Schematic showing the integration of high-quality recess-strained Ge photodiodes with CMOS circuits at back-end-of-line (BEOL). (b) A 3D schematic of a normal-incidence recess
The
Figure 1(c) shows a cross-sectional scanning electron microscopy (SEM) image of a fabricated device, prepared by focused-ion beam technique. The Ge width (1.02 μm) and
3. DEVICE CHARACTERIZATION
The fabricated devices were characterized in terms of their current-voltage (
Figure 2(a) shows the room-temperature
Figure 2.Characterization of the recess strained GOI MSM photodiodes. (a) Current-voltage (
4. STRAIN AND ABSORPTION COEFFICIENT ANALYSIS
The mechanical strain in Ge induced by the
Figure 3.Effect of recessed
To study the effect of stressors on
Figure 3(d) illustrates the normalized photocurrent spectra of these devices. In contrast with the photocurrent roll-off at
Figure 4.Strain, bandgap edge, and absorption coefficient analysis. (a) The simulated Ge
The extracted
5. CONCLUSION AND OUTLOOK
In conclusion, we have adopted recessed trenches to accommodate sidewall
In addition, it is worth noting that the recessed stressor concept can provide new application insights to existing photonic devices. For instance, a 0.6 GPa tensile
Acknowledgment
Acknowledgment. The authors acknowledge the resources from the Nanyang Nanofabrication Center (N2FC) for the device fabrication and Ms. Tina Xin Guo and Dr. Chongyang Liu for the device characterization. Support from Ms. Jin Zhou on the EBL writing is also acknowledged.
APPENDIX A
The finite element method simulation was constructed by mimicking the practical experimental conditions. This was realized by adopting multiple solid mechanics modules in COMSOL Multiphysics, each corresponding to an experimental process, and solving them in sequence according to the experimental procedures. The stress output from the previous module was imported as the initial stress to the subsequent module, and the output from the last module was converted to the final mechanical strain. All materials were set as linear elastic.
The modelling first followed the thermal budget during the GOI fabrication, consisting of the Ge-on-Si epitaxy at 600°C, followed by the direct wafer bonding and post-bonding annealing at 300°C, and finally cooling down to room temperature (300?K). The subsequent GOI patterning and
Deformation potential theory [
Considering the coupling with the spin-orbit split-off (SO) band, Ge
Figure?
Figure 5.(a)
References
[1] M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics, 7, 466-472(2013).
[2] R. Rafael, C.-G. Andrés, C. Emmanuele, G. Francisco. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter, 27, 313201(2015).
[3] A. R. Adams. Band-structure engineering for low-threshold high-efficiency semiconductor lasers. Electron. Lett., 22, 249-250(1986).
[4] M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, A. Lochtefeld. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys., 97, 011101(2004).
[5] R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev. Strained silicon as a new electro-optic material. Nature, 441, 199-202(2006).
[6] M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater., 11, 148-154(2011).
[7] A. Elbaz, D. Buca, N. von den Driesch, K. Pantzas, G. Patriarche, N. Zerounian, E. Herth, X. Checoury, S. Sauvage, I. Sagnes, A. Foti, R. Ossikovski, J.-M. Hartmann, F. Boeuf, Z. Ikonic, P. Boucaud, D. Grützmacher, M. El Kurdi. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nat. Photonics, 14, 375-382(2020).
[8] M. El Kurdi, M. Prost, A. Ghrib, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, G. Picardi, R. Ossikovski, P. Boucaud. Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photon., 3, 443-448(2016).
[9] F. T. Armand Pilon, A. Lyasota, Y. M. Niquet, V. Reboud, V. Calvo, N. Pauc, J. Widiez, C. Bonzon, J. M. Hartmann, A. Chelnokov, J. Faist, H. Sigg. Lasing in strained germanium microbridges. Nat. Commun., 10, 2724(2019).
[10] A. Gassenq, K. Guilloy, G. Osvaldo Dias, N. Pauc, D. Rouchon, J. M. Hartmann, J. Widiez, S. Tardif, F. Rieutord, J. Escalante, I. Duchemin, Y. M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, V. Calvo. 1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications. Appl. Phys. Lett., 107, 191904(2015).
[11] J.-H. Seo, E. Swinnich, Y.-Y. Zhang, M. Kim. Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications. Mater. Res. Lett., 8, 123-144(2020).
[12] S. An, S. Wu, C. S. Tan, G.-E. Chang, X. Gong, M. Kim. Modulation of light absorption in flexible GeSn metal–semiconductor–metal photodetectors by mechanical bending. J. Mater. Chem. C, 8, 13557-13562(2020).
[13] J. Jiang, M. Xue, C.-Y. Lu, C. S. Fenrich, M. Morea, K. Zang, J. Gao, M. Cheng, Y. Zhang, T. I. Kamins, J. S. Harris, J. Sun. Strain-induced enhancement of electroluminescence from highly strained germanium light-emitting diodes. ACS Photon., 6, 915-923(2019).
[14] D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, K. Saraswat. Strained germanium thin film membrane on silicon substrate for optoelectronics. Opt. Express, 19, 25866-25872(2011).
[15] D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, K. Saraswat. Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser. Appl. Phys. Lett., 100, 131112(2012).
[16] G. Capellini, C. Reich, S. Guha, Y. Yamamoto, M. Lisker, M. Virgilio, A. Ghrib, M. El Kurdi, P. Boucaud, B. Tillack, T. Schroeder. Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. Opt. Express, 22, 399-410(2014).
[17] A. Ghrib, M. de Kersauson, M. El Kurdi, R. Jakomin, G. Beaudoin, S. Sauvage, G. Fishman, G. Ndong, M. Chaigneau, R. Ossikovski, I. Sagnes, P. Boucaud. Control of tensile strain in germanium waveguides through silicon nitride layers. Appl. Phys. Lett., 100, 201104(2012).
[18] M. de Kersauson, M. Prost, A. Ghrib, M. El Kurdi, S. Sauvage, G. Beaudoin, L. Largeau, O. Mauguin, R. Jakomin, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, P. Boucaud. Effect of increasing thickness on tensile-strained germanium grown on InGaAs buffer layers. J. Appl. Phys., 113, 183508(2013).
[19] Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, E. A. Fitzgerald. Growth of highly tensile-strained Ge on relaxed In
[20] Y. Lin, D. Ma, K. H. Lee, J. Michel, C. S. Tan. A self-aligned dry etching method for mechanical strain enhancement of germanium and its uniformity improvement for photonic applications. Proc. SPIE, 10537, 1053704(2018).
[21] O. I. Dosunmu, D. D. Cannon, M. K. Emsley, B. Ghyselen, J. Liu, L. C. Kimerling, M. S. Unlu. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates. IEEE J. Sel. Top. Quantum Electron., 10, 694-701(2004).
[22] K. H. Lee, S. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, C. S. Tan. Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys., 116, 103506(2014).
[23] Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, C. S. Tan. High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform. Photon. Res., 5, 702-709(2017).
[24] Y. Lin, D. Ma, K. H. Lee, S. Bao, J. Michel, C. S. Tan. Extension of Germanium-on-insulator optical absorption edge using CMOS-compatible silicon nitride stressor. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 1-5(2017).
[25] S. Sze. Semiconductor Devices: Physics and Technology, 311-313(2002).
[26] B. S. Pearson, L. C. Kimerling, J. Michel. Germanium photodetectors on amorphous substrates for electronic-photonic integration. IEEE 13th International Conference on Group IV Photonics (GFP), 20-21(2016).
[27] G. Dushaq, A. Nayfeh, M. Rasras. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD. Opt. Express, 25, 32110-32119(2017).
[28] K.-W. Ang, S. Zhu, M. Yu, G.-Q. Lo, D.-L. Kwong. High-performance waveguided Ge-on-SOI metal–semiconductor–metal photodetectors with novel silicon–carbon (Si:C) Schottky barrier enhancement layer. IEEE Photon. Technol. Lett., 20, 754-756(2008).
[29] J. H. Nam. Monolithic integration of germanium-on-insulator platform on silicon substrate and its applications to devices(2016).
[30] Y. Lin, B. Son, K. H. Lee, J. Michel, C. S. Tan. Sub-mA/cm2 dark current density, buffer-less germanium (Ge) photodiodes on a 200-mm Ge-on-insulator substrate. IEEE Trans. Electron Devices, 68, 1730-1737(2021).
[31] W. S. Yoo, T. Ueda, T. Ishigaki, H. Nishigaki, N. Hasuike, H. Harima, M. Yoshimoto, C. S. Tan. Detection of Ge and Si intermixing in Ge/Si using multiwavelength micro-Raman spectroscopy. ECS Trans., 64, 79-88(2014).
[32] C. G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B, 39, 1871-1883(1989).
[33] J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express, 15, 11272-11277(2007).
[34] A. Frova, P. Handler. Franz-Keldysh effect in the space-charge region of a germanium p−n junction. Phys. Rev., 137, A1857-A1861(1965).
[35] K. Ye, W. Zhang, M. Oehme, M. Schmid, M. Gollhofer, K. Kostecki, D. Widmann, R. Körner, E. Kasper, J. Schulze. Absorption coefficients of GeSn extracted from PIN photodetector response. Solid-State Electron., 110, 71-75(2015).
[36] X. Li, Z. Li, S. Li, L. Chrostowski, G. Xia. Design considerations of biaxially tensile-strained germanium-on-silicon lasers. Semicond. Sci. Technol., 31, 065015(2016).
[37] D. Ma. Ge and GeSi electroabsorption modulator arrays via strain and composition engineering(2020).
[38] D. Feng, W. Qian, H. Liang, C.-C. Kung, Z. Zhou, Z. Li, J. S. Levy, R. Shafiiha, J. Fong, B. Jonathan Luff, M. Asghari. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J. Sel. Top. Quantum Electron., 19, 64-73(2013).
[39] N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, M. Asghari. 30 GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. Opt. Express, 19, 7062-7067(2011).
[40] S. A. Srinivasan, M. Pantouvaki, S. Gupta, H. T. Chen, P. Verheyen, G. Lepage, G. Roelkens, K. Saraswat, D. V. Thourhout, P. Absil, J. V. Campenhout. 56 Gb/s germanium waveguide electro-absorption modulator. J. Lightwave Technol., 34, 419-424(2016).
[41] S. L. Chuang. Physics of Photonic Devices, 80(2012).
[42] J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, L. C. Kimerling. Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100). Phys. Rev. B, 70, 155309(2004).

Set citation alerts for the article
Please enter your email address