[10] DERJAGUIN B V, FEDOSEEV D V, LUKYANOVICH V M, et al. Filamentary diamond crystals[J]. Journal of Crystal Growth, 1968, 2(6): 380-384.
[11] KOIZUMI S, MURAKAMI T, INUZUKA T, et al. Epitaxial growth of diamond thin films on cubic boron nitride{111} surfaces by dc plasma chemical vapor deposition[J]. Applied Physics Letters, 1990, 57(6): 563-565.
[13] YUGO S, KANAI T, KIMURA T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition[J]. Applied Physics Letters, 1991, 58(10): 1036-1038.
[15] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium[J]. Japanese Journal of Applied Physics, 1996, 35(8B): L1072
[16] CHEN C L, WANG Z C, KATO T, et al. Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride[J]. Nature Communications, 2015, 6: 6327.
[17] DAVIS R F. Deposition and characterization of diamond, silicon carbide and gallium nitride thin films[J]. Journal of Crystal Growth, 1994, 137(1/2): 161-169.
[18] LEE S T, PENG H Y, ZHOU X T, et al. A nucleation site and mechanism leading to epitaxial growth of diamond films[J]. Science, 2000, 287(5450): 104-106.
[19] BRESCIA R, SCHRECK M, GSELL S, et al. Transmission electron microscopy study of the very early stages of diamond growth on iridium[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1045-1050.
[21] LIU B J, SHU G Y, HAN J C, et al. Recent progress in hetero-epitaxial growth of the single-crystal diamond[J]. Scientia Sinica Technologica, 2020, 50(7): 831-848.
[22] KASU M, TAKAYA R, MASAKI R, et al. Initial growth mechanism of high-quality CVD diamond on Ir/sapphire substrate compared with Ir/MgO substrate[J]. Diamond and Related Materials, 2022, 128: 109287.
[23] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. Simulation of microwave plasmas concentrated on the top surface of a diamond substrate with finite thickness[J]. Diamond and Related Materials, 2006, 15(9): 1383-1388.
[24] LIANG Q, CHIN C Y, LAI J, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures[J]. Applied Physics Letters, 2009, 94(2): 024103.
[25] GEIS M W, EFREMOW N N, SUSALKA R, et al. Mosaic diamond substrates approaching single-crystal quality using cube-shaped diamond seeds[J]. Diamond and Related Materials, 1994, 4(1): 76-82.
[26] YAN C S, VOHRA Y K, MAO H K, et al. Very high growth rate chemical vapor deposition of single-crystal diamond[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12523-12525.
[27] MUCHNIKOV A B, RADISHEV D B, VIKHAREV A L, et al. Characterization of interfaces in mosaic CVD diamond crystal[J]. Journal of Crystal Growth, 2016, 442: 62-67.
[28] FINDELING-DUFOUR C, GICQUEL A. Study for fabricating large area diamond single-crystal layers[J]. Thin Solid Films, 1997, 308/309: 178-185.
[29] SHU G Y, DAI B, RALCHENKO V G, et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy[J]. Journal of Crystal Growth, 2017, 463: 19-26.
[30] WANG X W, DUAN P, CAO Z Z, et al. Surface morphology of the interface junction of CVD mosaic single-crystal diamond[J]. Materials, 2019, 13(1): 91.
[34] LIN J F, LIN J W, WEI P J. Thermal analysis for graphitization and ablation depths of diamond films[J]. Diamond and Related Materials, 2006, 15(1): 1-9.
[35] AMAMOTO Y, SEMBA T. Laser-forming technique of single-point cutting tool made of nano-polycrystalline diamond[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 2012, 78(794): 3583-3593.
[36] SUDHEER S K, MAHADEVAN PILLAI V P, NAYAR V U. Characterization of laser processing of single-crystal natural diamonds using micro-Raman spectroscopic investigations[J]. Journal of Raman Spectroscopy, 2007, 38(4): 427-435.
[37] OSTENDORF A, KULIK C, BAUER T, et al. Ablation of metals and semiconductors with ultrashort pulsed lasers: improving surface qualities of microcuts and grooves[C]//Lasers and Applications in Science and Engineering. Proc SPIE 5340, Commercial and Biomedical Applications of Ultrafast Lasers Ⅳ, San Jose, Ca, USA. 2004, 5340: 153-163.
[42] PARIKH N R, HUNN J D, MCGUCKEN E, et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing[J]. Applied Physics Letters, 1992, 61(26): 3124-3126.
[43] TZENG Y, WEI J, WOO J T, et al. Free-standing single-crystalline chemically vapor deposited diamond films[J]. Applied Physics Letters, 1993, 63(16): 2216-2218.
[44] MOKUNO Y, CHAYAHARA A, YAMADA H, et al. Large single crystal diamond plates produced by microwave plasma CVD[J]. Materials Science Forum, 2009, 615/616/617: 991-994.
[45] MOKUNO Y, CHAYAHARA A, YAMADA H. Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process[J]. Diamond and Related Materials, 2008, 17(4/5): 415-418.
[46] YAMADA H, CHAYAHARA A, UMEZAWA H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size[J]. Diamond and Related Materials, 2012, 24: 29-33.
[47] HEI L F, LIU J, LI C M, et al. Fabrication and characterizations of large homoepitaxial single crystal diamond grown by DC arc plasma jet CVD[J]. Diamond and Related Materials, 2012, 30: 77-84.
[51] YOSHIKAWA M, OKUZUMI F. Hot-iron-metal polishing machine for CVD diamond films and characteristics of the polished surfaces[J]. Surface and Coatings Technology, 1997, 88(1/2/3): 197-203.
[52] THORNTON A, WILKS J. The polishing of diamonds in the presence of oxidising agents[J]. Diamond and Related Materials, 1974(39): 39-42.
[53] FURUSHIRO N, HIGUCHI M, YAMAGUCHI T, et al. Polishing of single point diamond tool based on thermo-chemical reaction with copper[J]. Precision Engineering, 2009, 33(4): 486-491.
[54] OLLISON C D, BROWN W D, MALSHE A P, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond[J]. Diamond and Related Materials, 1999, 8(6): 1083-1090.
[57] KUBOTA A, TAKITA T. Novel planarization method of single-crystal diamond using 172 nm vacuum-ultraviolet light[J]. Precision Engineering, 2018, 54: 269-275.