• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2210006 (2022)
Xiao Liang1,2, Huiping Deng1,2,*, Sen Xiang1,2, and Jin Wu1,2
Author Affiliations
  • 1School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 2Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • show less
    DOI: 10.3788/LOP202259.2210006 Cite this Article Set citation alerts
    Xiao Liang, Huiping Deng, Sen Xiang, Jin Wu. Saliency Detection of Light Field Image Based on Feature Fusion and Feedback Refinement[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210006 Copy Citation Text show less
    Overall architecture of proposed network
    Fig. 1. Overall architecture of proposed network
    ECA network module
    Fig. 2. ECA network module
    CFM network module[13]
    Fig. 3. CFM network module[13]
    Comparison of PR curve results of differrent algorithms in (a) LFSD data set and (b) DUT-LF data set
    Fig. 4. Comparison of PR curve results of differrent algorithms in (a) LFSD data set and (b) DUT-LF data set
    Comparison of visual results of different algorithms in DUT-LF data set
    Fig. 5. Comparison of visual results of different algorithms in DUT-LF data set
    Comparison of visual results of different algorithms in LFSD data set
    Fig. 6. Comparison of visual results of different algorithms in LFSD data set
    VGG-19Dimensionality reduction
    Layerk×k-nInput sizeOutput sizeSLayerk×k-nInput sizeOutput sizeS
    Conv13×3-64256×256×3256×256×641Conv23×3-6464×64×12864×64×641
    Maxpool2×2256×256×64128×128×642Conv33×3-6432×32×25632×32×641
    Conv23×3-128128×128×64128×128×1282Conv43×3-6416×16×51216×16×641
    Maxpool2×2128×128×12864×64×1282Conv53×3-6416×16×51216×16×641
    Conv33×3-25664×64×12864×64×2561Conv264×64×6464×64×64
    Maxpool2×264×64×25632×32×2562Conv3Upsampling32×32×6464×64×641
    Conv43×3-51232×32×25632×32×5121Conv4Upsampling16×16×6464×64×641
    Maxpool2×232×32×51216×16×5122Conv5Upsampling16×16×6464×64×641
    Conv53×3-51216×16×25616×16×5121Conv2-Conv5Concat64×64×6464×64×(64×13)
    Table 1. Network parameters of feature extraction module
    DUT-LF data setLFSD data set
    AlgorithmF-measureMAES-measureE-measureF-measureMAES-measureE-measure
    LFS0.5330.2270.5850.7420.7350.2050.6810.773
    RDFD0.5990.1910.6580.7740.8020.1360.7860.834
    FPM0.6190.1420.6750.7450.8000.1340.7910.839
    MWS0.7420.1320.7020.7810.7880.1320.8090.781
    S2MA0.7530.1020.7870.8160.8030.0940.8370.863
    DLSD0.6840.0870.7860.8390.7790.1170.7860.852
    MAC0.7170.0920.7520.7890.7930.1180.7890.839
    DLFS0.8680.0700.8520.9050.7150.1470.7370.806
    MOLF0.8430.0520.8870.9230.8190.0880.8860.831
    LF-Net0.8330.0550.8780.9130.8050.0920.8200.882
    ER-Net0.9030.0400.8980.9460.8250.0850.8220.885
    Proposed0.8710.0490.8900.9130.8120.0880.8890.843
    Table 2. Comparison of index results of different algorithms in DUT-LF data set and LFSD data set
    AlgorithmDUT-LF data setLFSD data set
    MAEF-measureMAEF-measure
    MOLF0.0590.8010.0880.786
    ER-Net0.0480.8700.0890.805
    Proposed0.0490.8700.0860.810
    Table 3. Comparison of robustness results of different algorithms
    Network structureDUT-LF data setLFSD data set
    MAEF-measureMAEF-measure
    Baseline0.1100.8220.1320.753
    +SE and ConvLSTM0.0720.8500.1000.771
    +ECA and ConvLSTM0.0610.8630.0940.798
    +ECA and ConvLSTM0.0490.8710.0880.812
    +Feedback refinement module
    Table 4. Ablation experiments of different modules
    Xiao Liang, Huiping Deng, Sen Xiang, Jin Wu. Saliency Detection of Light Field Image Based on Feature Fusion and Feedback Refinement[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210006
    Download Citation