• Laser & Optoelectronics Progress
  • Vol. 59, Issue 22, 2215007 (2022)
Zhijun Yu, Guodong Wang*, and Xinyue Zhang
Author Affiliations
  • College of Computer Science & Technology, Qingdao University, Qingdao 266071, Shandong, China
  • show less
    DOI: 10.3788/LOP202259.2215007 Cite this Article Set citation alerts
    Zhijun Yu, Guodong Wang, Xinyue Zhang. Image Deblurring Based on Enhanced Multiscale Feature Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2215007 Copy Citation Text show less
    References

    [1] Fergus R, Singh B, Hertzmann A et al. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 787-794(2006).

    [2] Shan Q, Jia J Y, Agarwala A. High-quality motion deblurring from a single image[J]. ACM Transactions on Graphics, 27, 1-10(2008).

    [3] Chan T F, Wong C K. Total variation blind deconvolution[J]. IEEE Transactions on Image Processing, 7, 370-375(1998).

    [4] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 54, 4311-4322(2006).

    [5] Luo Y, Xu Y, Ji H. Removing rain from a single image via discriminative sparse coding[C], 3397-3405(2015).

    [6] Levin A, Weiss Y, Durand F et al. Understanding and evaluating blind deconvolution algorithms[C], 1964-1971(2009).

    [7] Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration[J]. IEEE Transactions on Image Processing, 17, 53-69(2008).

    [8] Kim K I, Kwon Y. Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1127-1133(2010).

    [9] Xu L, Zheng S C, Jia J Y. Unnatural L0 sparse representation for natural image deblurring[C], 1107-1114(2013).

    [10] Kim T H, Lee K M. Segmentation-free dynamic scene deblurring[C], 2766-2773(2014).

    [11] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [12] Rozumnyi D, Oswald M R, Ferrari V et al. DeFMO: deblurring and shape recovery of fast moving objects[C], 3455-3464(2021).

    [13] Zhang K H, Luo W H, Zhong Y R et al. Deblurring by realistic blurring[C], 2734-2743(2020).

    [14] Pan J S, Bai H R, Tang J H. Cascaded deep video deblurring using temporal sharpness prior[C], 3040-3048(2020).

    [15] Seets T, Ingle A, Laurenzis M et al. Motion adaptive deblurring with single-photon cameras[C], 1944-1953(2021).

    [16] Jiang Z, Zhang Y, Zou D Q et al. Learning event-based motion deblurring[C], 3317-3326(2020).

    [17] Brooks T, Mildenhall B, Xue T F et al. Unprocessing images for learned raw denoising[C], 11028-11037(2019).

    [18] Yuan Y, Su W, Ma D D. Efficient dynamic scene deblurring using spatially variant deconvolution network with optical flow guided training[C], 3552-3561(2020).

    [19] Zhang Y L, Li K P, Li K et al. Residual non-local attention networks for image restoration[EB/OL]. https://arxiv.org/abs/1903.10082

    [20] Dai T, Cai J R, Zhang Y B et al. Second-order attention network for single image super-resolution[C], 11057-11066(2019).

    [21] Zamir S W, Arora A, Khan S et al. CycleISP: real image restoration via improved data synthesis[C], 2693-2702(2020).

    [22] Chen Y, Guo H G, Ai Y P. Single image dehazing of multiscale deep-learning based on dual-domain decomposition[J]. Acta Optica Sinica, 40, 0210003(2020).

    [23] Tang J, Wang K Q, Zhang W et al. Deep learning based image restoration method of optical synthetic aperture imaging system[J]. Acta Optica Sinica, 40, 2111001(2020).

    [24] Hu F, Lin Y, Hou M D et al. Super-resolution reconstruction of cytoskeleton image based on deep learning[J]. Acta Optica Sinica, 40, 2410001(2020).

    [25] Nah S, Kim T H, Lee K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C], 257-265(2017).

    [26] Zhang H G, Dai Y C, Li H D et al. Deep stacked hierarchical multi-patch network for image deblurring[C], 5971-5979(2019).

    [27] Zamir S W, Arora A, Khan S et al. Multi-stage progressive image restoration[C], 14816-14826(2021).

    [28] Kupyn O, Budzan V, Mykhailych M et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C], 8183-8192(2018).

    [29] Kupyn O, Martyniuk T, Wu J R et al. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better[C], 8877-8886(2019).

    [30] Qi Q, Guo J C, Chen S J. Blind image deblurring based on image edge determination mechanism[J]. Laser & Optoelectronics Progress, 57, 241022(2020).

    [31] Song H Z, Wu X J. Deblurring model of image multi-scale dense network[J]. Laser & Optoelectronics Progress, 56, 211001(2019).

    [32] Ren D W, Zuo W M, Hu Q H et al. Progressive image deraining networks: a better and simpler baseline[C], 3932-3941(2019).

    [33] Tao X, Gao H Y, Shen X Y et al. Scale-recurrent network for deep image deblurring[C], 8174-8182(2018).

    [34] Li J, Fang F, Mei K et al. Multi-scale residual network for image super-resolution[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Lecture notes in computer science, 11212, 517-532(2018).

    [35] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [36] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [37] Purohit K, Rajagopalan A N. Region-adaptive dense network for efficient motion deblurring[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 11882-11889(2020).

    [38] Suin M, Purohit K, Rajagopalan A N. Spatially-attentive patch-hierarchical network for adaptive motion deblurring[C], 3603-3612(2020).

    [39] Shen Z Y, Wang W G, Lu X K et al. Human-aware motion deblurring[C], 5571-5580(2019).

    [40] Kingma D P, Ba J. Adam: a method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980