• Chinese Optics Letters
  • Vol. 23, Issue 3, 031406 (2025)
Zhuoying Wang1, Jie Zhao1, Zizhuo Li1, Zhenxing Sun1,*..., Wentao Sun1, Jiaqiang Nie1, Yue Zhang1, Zhiqian Yin1, Wenxuan Wang2, Rulei Xiao1 and Xiangfei Chen1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Intelligent Optical Sensing and Manipulation of the Ministry of Education & National Laboratory of Solid State Microstructures & College of Engineering and Applied Sciences & Institute of Optical Communication Engineering, Nanjing University, Nanjing 210093, China
  • 2Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • show less
    DOI: 10.3788/COL202523.031406 Cite this Article Set citation alerts
    Zhuoying Wang, Jie Zhao, Zizhuo Li, Zhenxing Sun, Wentao Sun, Jiaqiang Nie, Yue Zhang, Zhiqian Yin, Wenxuan Wang, Rulei Xiao, Xiangfei Chen, "Compact monolithic dual-wavelength distributed feedback laser with tunable wavelength spacing based on REC technique," Chin. Opt. Lett. 23, 031406 (2025) Copy Citation Text show less
    References

    [1] F. Ouellette, Z. Ou, J. Li. Dual wavelength differential detection of fiber Bragg grating sensors with a pulsed DFB laser. Sensors, 20, 4766(2020).

    [2] F. Kapsalidis, M. Shahmohammadi, M. J. Süess et al. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy. Appl. Phys. B, 124, 107(2018).

    [3] G. Carpintero, R. C. Guzman, C. Gordon et al. Photonic integrated circuits for radio-frequency signal generation. J. Lightwave Technol., 34, 508(2016).

    [4] Q. Tang, Y. Liu, L. Zhang et al. 25 Gb/s directly modulated widely tunable 1.3 µm dual wavelength DFB laser for THz communication. IEEE Photon. Technol. Lett., 32, 410(2020).

    [5] W. Cao, M. Luo, H. Chen. A tunable dual-wavelength fiber ring-cavity laser based on semiconductor optical amplifier using two external-injected DFB lasers. Optik, 180, 344(2019).

    [6] Z. Wu, Q. Shen, L. Zhan et al. Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser. IEEE Photon. Technol. Lett., 22, 568(2010).

    [7] M. Cai, X. Zhang, T. Li et al. Monolithic tunable dual-wavelength laser utilizing erbium-doped lithium niobate on an insulator. Opt. Lett., 49, 3018(2024).

    [8] C.-P. Huang, Y.-M. Huang, Y.-C. Hwang et al. Microwave behavior of a monolithic dual-wavelength DFB laser based on current injection model. Opt. Commun., 471, 125944(2020).

    [9] A. A. Tseng, K. Chen, C. D. Chen et al. Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans. Electron. Packag. Manuf., 26, 141(2003).

    [10] Z. Sun, R. Xiao, Z. Su et al. High single-mode stability tunable in-series laser array with high wavelength-spacing uniformity. J. Lightwave Technol., 38, 6038(2020).

    [11] M.-C. Lo, A. Zarzuelo, R. Guzman et al. Monolithically integrated microwave frequency synthesizer on InP generic foundry platform. J. Lightwave Technol., 36, 4626(2018).

    [12] J. Huang, C. Sun, B. Xiong et al. Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking. Opt. Express, 17, 20727(2009).

    [13] F. Guo, D. Lu, L. Guo et al. 1.3-μm dual-wavelength DFB laser chip with modulation bandwidth enhancement by integrated passive optical feedback. Opt. Express, 24, 28869(2016).

    [14] Q. Cai, Y. Zhang, J. Zheng et al. A monolithically integrated two-section laser for wideband and frequency-tunable photonic microwave generation. J. Lightwave Technol., 41, 404(2023).

    [15] M. Virte, P. Marin-Palomo. Integrated multi-wavelength lasers for all-optical processing of ultra-high frequency signals. Appl. Phys. Lett., 123, 180502(2023).

    [16] G. Kervella, F. Van Dijk, G. Pillet et al. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation. Opt. Lett., 40, 3655(2015).

    [17] L. Yu, D. Lu, Y. Sun et al. Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser. Opt. Commun., 345, 57(2015).

    [18] Y. Zhang, Y. Xu, J. Shi et al. Monolithic integrated linear frequency modulated dual-wavelength DFB laser chip with high linearity and its application in long distance ranging. ACS Photonics, 10, 2344(2023).

    [19] Y.-H. Lo, Y.-C. Wu, S.-C. Hsu et al. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Opt. Express, 22, 13125(2014).

    [20] Y. Fan, B. Yuan, M. Al-Rubaiee et al. Millimeter-wave generation based on four phase-shifted sampled moiré grating dual-wavelength DFB laser. IEEE Photon. Technol. Lett., 36, 282(2024).

    [21] B. Yuan, Y. Fan, S. Zhu et al. Millimeter-wave generation based on a monolithic dual-wavelength DFB laser with four phase-shifted sampled gratings and equivalent chirp technology. Opt. Lett., 48, 5093(2023).

    [22] F. Ouellette, J. Li, Z. Ou et al. High-resolution interrogation of tilted fiber Bragg gratings using an extended range dual wavelength differential detection. Opt. Express, 28, 14662(2020).

    [23] J. Zhao, Z. Sun, Y. Zhang et al. Multi-wavelength DFB laser with high mode stability and uniform spacing for optical I/O technology. J. Lightwave Technol., 42, 4874(2024).

    [24] J. Hong, W. P. Huang, T. Makino. On the transfer-matrix method for distributed-feedback wave-guide devices. J. Lightwave Technol., 10, 1860(1992).

    [25] Y. Zhang, Z. Sun, J. Zhao et al. Over 100 mW O-band multi-wavelength DFB laser array for optical I/O technology. IEEE Photon. Technol. Lett., 36, 821(2024).

    Zhuoying Wang, Jie Zhao, Zizhuo Li, Zhenxing Sun, Wentao Sun, Jiaqiang Nie, Yue Zhang, Zhiqian Yin, Wenxuan Wang, Rulei Xiao, Xiangfei Chen, "Compact monolithic dual-wavelength distributed feedback laser with tunable wavelength spacing based on REC technique," Chin. Opt. Lett. 23, 031406 (2025)
    Download Citation