• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210007 (2023)
Jing Yang and Long Ma*
Author Affiliations
  • School of Ordnance Science and Technology, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • show less
    DOI: 10.3788/LOP220929 Cite this Article Set citation alerts
    Jing Yang, Long Ma. Thermal Infrared Object Tracking Method Based on Positional Perception[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210007 Copy Citation Text show less
    References

    [1] Wang P, Sun M Y, Wang H Y et al. An object tracking algorithm with channel reliability and target response adaptation[J]. Journal of Electronics & Information Technology, 42, 1950-1958(2020).

    [2] Meng L, Yang X. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 45, 1244-1260(2019).

    [3] Bromley J, Bentz J W, Bottou L et al. Signature verification using a “Siamese” time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 7, 669-688(1993).

    [4] Tao R, Gavves E, Smeulders A W M. Siamese instance search for tracking[C], 1420-1429(2016).

    [5] Bertinetto L, Valmadre J, Henriques J F et al. Fully-convolutional Siamese networks for object tracking[M]. Hua G, Jégou H. Computer vision-ECCV 2016 workshops. Lecture notes in computer science, 9914, 850-865(2016).

    [6] Jin G D, Xue Y L, Tan L N et al. Advances in object tracking algorithm based on Siamese network[J]. Systems Engineering and Electronics, 44, 1805-1822(2022).

    [7] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [8] Li B, Wu W, Wang Q et al. SiamRPN: evolution of Siamese visual tracking with very deep networks[C], 4277-4286(2019).

    [9] Yang F C, Yang D D, Mao N et al. Robust infrared target tracking based on histograms of sparse coding[J]. Acta Optica Sinica, 37, 1115002(2017).

    [10] Li C, Yang D D, Song P et al. Global-aware Siamese network for thermal infrared object tracking[J]. Acta Optica Sinica, 41, 0615002(2021).

    [11] Qian K. Study on infrared target tracking technology based on machine learning theory[D](2018).

    [12] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C], 3431-3440(2015).

    [13] Wang X L, Girshick R, Gupta A et al. Non-local neural networks[C], 7794-7803(2018).

    [14] Fu J, Liu J, Tian H J et al. Dual attention network for scene segmentation[C], 3141-3149(2019).

    [15] Wang Q, Teng Z, Xing J L et al. Learning attentions: residual attentional Siamese network for high performance online visual tracking[C], 4854-4863(2018).

    [16] Real E, Shlens J, Mazzocchi S et al. YouTube-BoundingBoxes: a large high-precision human-annotated data set for object detection in video[C], 7464-7473(2017).

    [17] Russakovsky O, Deng J, Su H et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 115, 211-252(2015).

    [18] Lin T Y, Maire M, Belongie S et al. Microsoft COCO: common objects in context[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014. Lecture notes in computer science, 8693, 740-755(2014).

    [19] Li C L, Liang X Y, Lu Y J et al. RGB-T object tracking: benchmark and baseline[J]. Pattern Recognition, 96, 106977(2019).

    [20] Li C L, Cheng H, Hu S Y et al. Learning collaborative sparse representation for grayscale-thermal tracking[J]. IEEE Transactions on Image Processing, 25, 5743-5756(2016).

    [21] Danelljan M, Bhat G, Khan F S et al. ECO: efficient convolution operators for tracking[C], 6931-6939(2017).

    [22] Danelljan M, Robinson A, Shahbaz Khan F et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9909, 472-488(2016).

    [23] Danelljan M, Häger G, Shahbaz Khan F et al. Accurate scale estimation for robust visual tracking[C], 1-11(2014).

    [24] Danelljan M, Häger G, Khan F S et al. Learning spatially regularized correlation filters for visual tracking[C], 4310-4318(2015).