[1] Dong C, Loy C C, He K M et al. Learning a deep convolutional network for image super-resolution[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014, 8692, 184-199(2014).
[2] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).
[3] Zhang L, Wu X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 15, 2226-2238(2006).
[4] Tai Y W, Liu S C, Brown M S et al. Super resolution using edge prior and single image detail synthesis[C], 2400-2407(2010).
[5] Li Y, Shi N, Kong H H et al. Sparse angle CT reconstruction algorithm based on total variation and convolutional sparse coding in gradient domain[J]. Laser & Optoelectronics Progress, 58, 1210031(2021).
[6] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9906, 391-407(2016).
[7] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2017).
[8] Shah Z H, Müller M, Wang T C et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 9, 570-583(2021).
[9] Yang C S, Yao Y H, Jin C Z et al. High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm[J]. Photonics Research, 9, B30-B37(2021).
[10] Liu K W, Ma Y, Xiong H X et al. Medical-image super-resolution reconstruction method based on residual channel attention network[J]. Laser & Optoelectronics Progress, 57, 021014(2020).
[11] Xi Z H, Hou C Y, Yuan K P. Medical image super resolution reconstruction based on residual network[J]. Computer Engineering and Applications, 55, 191-197(2019).
[12] Zhang Y L, Tian Y P, Kong Y et al. Residual dense network for image super-resolution[C], 2472-2481(2018).
[13] Zhang Y L, Li K P, Li K et al. Image super-resolution using very deep residual channel attention networks[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 294-310(2018).
[14] Guo Y, Chen J, Wang J D et al. Closed-loop matters: dual regression networks for single image super-resolution[C], 5406-5415(2020).
[15] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).
[16] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).
[17] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 3-19(2018).
[18] Liu J, Zhang W J, Tang Y T et al. Residual feature aggregation network for image super-resolution[C], 2356-2365(2020).