• Laser & Optoelectronics Progress
  • Vol. 60, Issue 2, 0210009 (2023)
Jinhe Fan1,2, Jing Wu1,2,*, and Maolin He1,2
Author Affiliations
  • 1College of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • 2Sichuan Key Laboratory of Special Environmental Robotics, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • show less
    DOI: 10.3788/LOP212865 Cite this Article Set citation alerts
    Jinhe Fan, Jing Wu, Maolin He. Super-Resolution Computed Tomography Reconstruction of Residual Attention Aggregation Dual Regression Network[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210009 Copy Citation Text show less
    References

    [1] Dong C, Loy C C, He K M et al. Learning a deep convolutional network for image super-resolution[M]. Fleet D, Pajdla T, Schiele B, et al. Computer vision-ECCV 2014, 8692, 184-199(2014).

    [2] Dong C, Loy C C, He K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [3] Zhang L, Wu X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 15, 2226-2238(2006).

    [4] Tai Y W, Liu S C, Brown M S et al. Super resolution using edge prior and single image detail synthesis[C], 2400-2407(2010).

    [5] Li Y, Shi N, Kong H H et al. Sparse angle CT reconstruction algorithm based on total variation and convolutional sparse coding in gradient domain[J]. Laser & Optoelectronics Progress, 58, 1210031(2021).

    [6] Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016, 9906, 391-407(2016).

    [7] Lim B, Son S, Kim H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2017).

    [8] Shah Z H, Müller M, Wang T C et al. Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images[J]. Photonics Research, 9, 570-583(2021).

    [9] Yang C S, Yao Y H, Jin C Z et al. High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm[J]. Photonics Research, 9, B30-B37(2021).

    [10] Liu K W, Ma Y, Xiong H X et al. Medical-image super-resolution reconstruction method based on residual channel attention network[J]. Laser & Optoelectronics Progress, 57, 021014(2020).

    [11] Xi Z H, Hou C Y, Yuan K P. Medical image super resolution reconstruction based on residual network[J]. Computer Engineering and Applications, 55, 191-197(2019).

    [12] Zhang Y L, Tian Y P, Kong Y et al. Residual dense network for image super-resolution[C], 2472-2481(2018).

    [13] Zhang Y L, Li K P, Li K et al. Image super-resolution using very deep residual channel attention networks[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 294-310(2018).

    [14] Guo Y, Chen J, Wang J D et al. Closed-loop matters: dual regression networks for single image super-resolution[C], 5406-5415(2020).

    [15] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [16] Hou Q B, Zhou D Q, Feng J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).

    [17] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018, 11211, 3-19(2018).

    [18] Liu J, Zhang W J, Tang Y T et al. Residual feature aggregation network for image super-resolution[C], 2356-2365(2020).

    [19] Tawsifur R, M C. Amith K. COVID-19 radiography database[DB/OL]. https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

    [20] Albertina B, Watson M. Radiology data from the cancer genome atlas lung adenocarcinoma [TCGA-LUAD] collection//The cancer imaging archive[DB/OL]. http://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5

    [21] Armato III, McLennan S G. Data from LIDC-IDRI//The cancer imaging archive[DB/OL]. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX

    Jinhe Fan, Jing Wu, Maolin He. Super-Resolution Computed Tomography Reconstruction of Residual Attention Aggregation Dual Regression Network[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210009
    Download Citation