• Optoelectronics Letters
  • Vol. 20, Issue 4, 243 (2024)
Yongchang ZHU1, Sen YANG1, Jigang TONG1,*, and Zenghui WANG2,3
Author Affiliations
  • 1School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
  • 2Center of Artificial Intelligence and Data Science, University of South Africa, Florida 1709, South Africa
  • 3Department of Electrical Engineering, University of South Africa, Florida 1709, South Africa
  • show less
    DOI: 10.1007/s11801-024-3126-1 Cite this Article
    ZHU Yongchang, YANG Sen, TONG Jigang, WANG Zenghui. Multi-scale detector optimized for small target[J]. Optoelectronics Letters, 2024, 20(4): 243 Copy Citation Text show less
    References

    [1] LIAO Y R, WANG H N, LIN C B, et al. Research progress of optical remote sensing image target detection based on deep learning[J]. Journal on communications,2022, 43(5): 190-203.

    [2] ZHANG T, LI Z, SUN Z, et al. A fully convolutional anchor-free object detector[J]. The visual computer,2023, 39(2): 569-580.

    [3] MOHAMMADKARIMI M, MEHRABI M, ARDAKANI M, et al. Deep learning-based sphere decoding[J]. IEEE transactions on wireless communications,2019, 18(9): 4368-4378.

    [4] LI Z, GUO Q, SUN B, et al. Small object detection methods in complex background: an overview[J]. International journal of pattern recognition and artificial intelligence, 2023, 37(2): 2350002.

    [5] LI R, HU J, LI S, et al. Blind detection of communication signals based on improved YOLO3[C]//2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), April 9-11, 2021, Xi'an, China.New York: IEEE, 2021: 424-429.

    [6] VARA P N R S, D'SOUZAKEVIN B, BHARGAVAVIJAY K. A downscaled faster-RCNN framework for signal detection and time-frequency localization in wideband RF systems[J]. IEEE transactions on wireless communications, 2020, 19(7): 4847-4862.

    [7] WAN Y, LIAO Z, LIU J, et al. Small object detection leveraging density-aware scale adaptation[J]. The photogrammetric record, 2023, 38(182): 160-175.

    [8] QIN H, WU Y, DONG F, et al. Dense sampling and detail enhancement network: improved small object detection based on dense sampling and detail enhancement[J]. IET computer vision, 2022, 16(4): 307-316.

    [9] XIAO Z H, DONG E Z, TONG J G, et al. Light weight object detector based on composite attention residual network and boundary location loss[J]. Neurocomputing,2022, 494: 132-147.

    [10] ZHANG S F, WANG Q, ZHU T, et al. Detection and classification of small traffic signs based on cascade network[J]. Chinese journal of electronics, 2021, 30(4):727-735.

    [11] CHEN S, LI Z, TANG Z. Relation R-CNN: a graph based relation-aware network for object detection[J].IEEE signal processing letters, 2020, 27: 1680-1684.

    [12] XU D, GUAN J, FENG P, et al. Association loss for visual object detection[J]. IEEE signal processing letters,2020, 27: 1435-1439.

    [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016,Las Vegas, NV, USA. New York: IEEE, 2016: 779-788.

    [14] REDMON J, FARHADI A. YOLO9000: better, faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 21-26,2017, Honolulu, HI, USA. New York: IEEE, 2017:7263-7271.

    [15] REDMON J, FARHADI A. YOLOV3: an incremental improvement[EB/OL]. (2018-04-08) [2023-09-05].https://arxiv.org/abs/1804.02767.

    [16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOV4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2023-09-05]. https://arxiv.org/abs/2004.10934.

    [17] JIN H, SONG Q, HU X. Auto-Keras: efficient neural architecture search with network morphism[EB/OL].(2018-06-27) [2023-09-05]. https://arxiv.org/abs/1806.10282v2.

    [18] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 10778-10787.

    [19] LI F, GAO D, YANG Y, et al. Small target deep convolution recognition algorithm based on improved YOLOv4[J]. International journal of machine learning and cybernetics, 2023, 14(2): 387-394.

    [20] BOSQUET B, CORES D, SEIDENARI L, et al. A full data augmentation pipeline for small object detection based on generative adversarial networks[J]. Pattern recognition: the journal of the pattern recognition society,2023, 133: 108998-109010.

    [21] YANG Z, YU H, FENG M, et al. Small object augmentation of urban scenes for real-time semantic segmentation[J]. IEEE transactions on image processing, 2020,29: 5175-5190.

    [22] LEE G, HONG S, CHO D. Self-supervised feature enhancement networks for small object detection in noisy images[J]. IEEE signal processing letters, 2021, 28:1026-1030.

    [23] ZHANG H, DU Q, QI Q, et al. A recursive attention-enhanced bidirectional feature pyramid network for small object detection[J]. Multimedia tools and applications,2023, 82(9): 13999-14018.

    ZHU Yongchang, YANG Sen, TONG Jigang, WANG Zenghui. Multi-scale detector optimized for small target[J]. Optoelectronics Letters, 2024, 20(4): 243
    Download Citation