[1] Faisal M, Albogamy F, Elgibreen H et al. Deep learning and computer vision for estimating date fruits type, maturity level, and weight[J]. IEEE Access, 8, 206770-206782(2020).
[2] Cheng Z, Zhao N J, Yin G F et al. Identification method of planktonic algae community based on multi-task convolutional neural network[J]. Acta Optica Sinica, 42, 0530002(2022).
[3] Zhang B, Zhang M S, Shen M S et al. Quality monitoring method for apples of different maturity under long-term cold storage[J]. Infrared Physics & Technology, 112, 103580(2021).
[4] Menesatti P, Zanella A, D’Andrea S et al. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples[J]. Food and Bioprocess Technology, 2, 308-314(2009).
[5] Xu Y X, Dai H C, Zhang Y et al. Detection of tomato fruit sugar content based on phase imaging[J]. Chinese Journal of Lasers, 51, 0307109(2024).
[6] Li L. Research on apple maturity and associated quality factors based on nondestructive detection[D](2018).
[7] Wang D Z, Li F, Yan C Y et al. Lightweight apple-leaf pathological recognition based on multiscale fusion[J]. Laser & Optoelectronics Progress, 60, 0210005(2023).
[8] Hossain M S, Al-Hammadi M, Muhammad G. Automatic fruit classification using deep learning for industrial applications[J]. IEEE Transactions on Industrial Informatics, 15, 1027-1034(2019).
[9] Lal S, Behera S K, Sethy P K et al. Identification and counting of mature apple fruit based on BP feed forward neural network[C], 361-368(2017).
[10] Hamza R, Chtourou M. Apple ripeness estimation using artificial neural network[C], 229-234(2018).
[11] Gunawan K C, Lie Z S. Apple ripeness level detection based on skin color features with convolutional neural network classification method[C](2021).
[12] Schroff F, Kalenichenko D, Philbin J. FaceNet: a unified embedding for face recognition and clustering[C], 815-823(2015).
[13] Petro A B, Sbert C, Morel J M. Multiscale retinex[J]. Image Processing on Line, 4, 71-88(2014).
[14] Zhang Z G, Yu P F, Li H Y et al. Fine-grained image recognition of wild mushroom based on multiscale feature guide[J]. Laser & Optoelectronics Progress, 59, 1210016(2022).
[15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. http://arxiv.org/abs/1409.1556v6
[16] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[17] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).
[18] Sandler M, Howard A, Zhu M L et al. MobileNetV2: inverted residuals and linear bottlenecks[C], 4510-4520(2018).
[19] Peng Y F, Zhang M T, Zhang P J et al. Single-image super-resolution reconstruction aggregating residual attention network[J]. Laser & Optoelectronics Progress, 60, 1010017(2023).
[20] Iandola F, Moskewicz M, Karayev S et al. DenseNet: implementing efficient ConvNet descriptor pyramids[EB/OL]. https://arxiv.org/abs/1404.1869
[21] Wang X, Wang C R, Wang C et al. Dual-channel multi-perception convolutional network for image super-resolution[J]. Journal of Northeastern University (Natural Science), 41, 1564-1569, 1576(2020).
[22] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).
[23] Dumoulin V, Visin F, Cao J N et al. A guide to convolution arithmetic for deep learning[EB/OL]. http://arxiv.org/abs/1603.07285v2