[1] Dai Y J[M]. Lidar technology, 2-7(2010).
[2] Zhao Y M, Li Y H, Shang Y N et al. Application and development direction of lidar[J]. Journal of Telemetry, Tracking and Command, 35, 4-22(2014).
[3] Song Y S, Du X P, Zeng Z Y. The key technology analysis of foreign 3D LADAR for space target[J]. Journal of Academy of Equipment, 25, 55-60(2014).
[4] Du X P, Zhao J G, Zeng Z Y et al[M]. FMCW laser detection technology, 92-93(2015).
[5] Davis Q V, Kulczyk W K. Optical and electronic mixing in an avalanche photodiode[J]. Electronics Letters, 6, 25(1970). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4234500
[6] Kulczyk W K, Davis Q V. The avalanche photodiode as an electronic mixer in an optical receiver[J]. IEEE Transactions on Electron Devices, 19, 1181-1190(1972). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1477043
[7] Seeds A J, Lenoir B. Avalanche diode harmonic photoelectric mixer[J]. IEE Proceedings J- Optoelectronics, 133, 353(1986).
[8] Castagnet D. Avalanche-photodiode-based heterodyne optical head of a phase-shift laser range finder[J]. Optical Engineering, 45, 043003(2006). http://spie.org/Publications/Journal/10.1117/1.2190229
[9] Moutaye E R, Tap-Beteille H. CMOS avalanche photodiode embedded in a phase-shift laser rangefinder[J]. IEEE Transactions on Electron Devices, 55, 3396-3401(2008). http://ieeexplore.ieee.org/document/4674555/
[10] Song Y S, Du X P, Zeng Z Y. On the research of avalanche photodiodes-based heterodyne in FM/CW laser rangefinder[J]. Optik, 125, 2895-2898(2014). http://www.sciencedirect.com/science/article/pii/S0030402614000151
[11] McKeag W, Veeder T, Wang J X et al. . New developments in HgCdTe APDs and LADAR receivers[J]. Proceedings of SPIE, 8012, 801230(2011). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1350693
[12] McManamon P F, Banks P, Beck J et al. . Comparison of flash lidar detector options[J]. Optical Engineering, 56, 031223(2017). http://spie.org/publications/journal/10.1117/1.OE.56.3.031223
[13] de Borniol E D, Rothman J, Guellec F et al. . Active three-dimensional and thermal imaging with a 30-μM pitch 320× 256 HgCdTe avalanche photodiode focal plane array[J]. Optical Engineering, 51, 061305(2012). http://spie.org/Publications/Journal/10.1117/1.OE.51.6.061305
[14] Williams G M, Compton M, Ramirez D A et al. Multi-gain-stage InGaAs avalanche photodiode with enhanced gain and reduced excess noise[J]. IEEE Journal of the Electron Devices Society, 1, 54-65(2013). http://ieeexplore.ieee.org/document/6509920/
[15] Wang F, Jiang S B, Hu J L et al. Circuit design of single-photon detector based on APD[J]. Chinese Journal of Electron Devices, 39, 1093-1097(2016).
[16] Deng G P, Liu C J, Zhu X X et al. Readout IC for low-level light imaging AlGaN APD arrays[J]. Semiconductor Photoelectrics, 34, 569-572, 575(2013).
[17] Chen G Q, Zhang J L, Wang P et al. Design of digital ROIC for HgCdTe E-APD FPA[J]. Infrared and Laser Engineering, 43, 2798-2804(2014).
[18] Shen P H, Stead M R. Taysing-Lara M A, et al. Interdigitated finger semiconductor photodetector for photoelectric mixing[J]. Proceedings of SPIE, 4028, 426-436(2000).
[19] Aliberti K, Shen H, Stead M R et al. Modeling the optoelectronic mixing effect in metal-semiconductor-metal detectors[J]. Proceedings of SPIE, 4646, 127-137(2002). http://spie.org/Publications/Proceedings/Paper/10.1117/12.470508
[20] Aliberti K, Shen H, Stann B et al. Mixing characteristics of InAlAs/InGaAs metal-semiconductor-metal photoelectric mixers[J]. Proceedings of SPIE, 369-377(2003). http://spie.org/Publications/Proceedings/Paper/10.1117/12.512030
[21] Zhang L C, Wang T, Yin F et al. Facture of high responsivity GaAs-MSM photoelectric self-mixing array[J]. Laser & Infrared, 41, 925-928(2011).
[22] Yu M Q, Gao J B, Fang Z X et al. Research on the design and experiment of MSM laser range imaging radar[J]. Laser & Infrared, 41, 616-621(2011).
[23] Redman B, Ruff W, Giza M. Photon counting chirped AM ladar: Concept, simulation, and initial experimental results[J]. Proceedings of SPIE, 6214, 62140P(2006). http://proceedings.spiedigitallibrary.org/mobile/proceeding.aspx?articleid=1285554
[24] Zhang Z J. The research of the sheltered target imaging using chirped amplitude modulation ladar based on GM-APD[D]. Harbin: Harbin Institute of Technology, 10-18(2011).
[25] Zhang Z J, Wu L, Zhang Y et al. Method to improve the signal-to-noise ratio of photon-counting chirped amplitude modulation ladar[J]. Applied Optics, 52, 274(2013). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-52-2-274
[26] Jack M, Chapman G, Edwards J et al. Advances in ladar components and subsystems at Raytheon[J]. Proceedings of SPIE, 8353, 83532F(2012). http://www.spie.org/x648.xml?product_id=923683
[27] Itzler M A, Entwistle M, Jiang X D et al. Geiger-mode APD single-photon cameras for 3D laser radar imaging. [C]∥IEEE Aerospace Conference, March 1-8, 2014, Big Sky, MT, USA. New York: IEEE, 1-12(2014).
[28] Sun J F, Jiang P, Zhang X C et al. Experimental research of 32×32 InGaAs Gm-APD arrays laser active imaging[J]. Infrared and Laser Engineering, 45, 1206006(2016).
[29] Ruff W C, Bruno J D, Kennerly S W et al. Self-mixing detector candidates for an FM/CW ladar architecture[J]. Proceedings of SPIE, 4035, 152-163(2000). http://spie.org/Publications/Proceedings/Paper/10.1117/12.397787
[30] Zhang A M, Jiang N. Simulation of ICCD optical coupling in underwater low-light-level imaging[J]. Foreign Electronic Measurement Technology, 32, 17-22(2013).
[31] Xu Q Q. Noise characteristic test and analysis of low light ICCD[D]. Nanjing: Nanjing University of Science and Technology, 25-33(2015).
[32] Verle W A, Kenneth A C, Philip W A et al. EBAPS©: Nest generation, low power, digital night vision. [C]∥Proceedings of Presented at the OPTRO International Symposium, May 9-12, 2005, Paris, France. Paris: Association Aéronautique et Astronautique de France, 1-10(2005).
[33] Stann B, Redman B C, Lawler W et al. Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging[J]. Proceedings of SPIE, 6550, 655005(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.719523
[34] Song D, Shi F, Li Y. Simulation of charge collection efficiency for EBAPS with uniformly doped substrate[J]. Infrared and Laser Engineering, 45, 56-60(2016).
[35] Gopalakrishnan G K, Burns W K, Bulmer C H. A LiNbO3 microwave-photoelectric mixer with linear performance. [C]∥1993 IEEE MTT-S International Microwave Symposium Digest, June 14-18, 1993, Atlanta, GA, USA, USA. New York: IEEE, 1055-1058(1993).
[36] Gopalakrishnan G K, Burns W K, Bulmer C H. Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 41, 2383-2391(1993). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=260732
[37] Zhao L J. Research on linear modulation and microwave photonic frequency conversion technology based on electro-optic modulator Xi'an:[D]. Xidian University, 33-41(2014).
[38] Wang M E. The research into high linear and high carrier-to-noise ratio microwave photonic technology[D]. Beijing: Beijing University of Posts and Telecom, 18-26(2017).
[39] Dong X Y, Xu E M, Li F et al. Linearized microwave photonic link based on phase modulation[J]. Optical Communication Technology, 42, 55-58(2018).
[40] Schmidt B, Tuvey S, Banks P S. 3D sensor development to support EDL (entry, descent, and landing) for autonomous missions to Mars[J]. Proceedings of SPIE, 8519, 851905(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.931665
[41] McManamon P. Review of ladar: A historic, yet emerging, sensor technology with rich phenomenology[J]. Optical Engineering, 51, 060901(2012). http://spie.org/x648.xml?product_id=981823
[42] Zhang P, Du X P, Zhao J G et al. High resolution flash three-dimensional LIDAR systems based on polarization modulation[J]. Applied Optics, 56, 3889(2017). http://europepmc.org/abstract/MED/28463283
[43] Chen Z. Research on Laser 3D imaging based on polarization modulation[D]. Beijing: University of Chinese Academy of Sciences, 16-23(2017).
[44] Peng Z X. Research on 3D array imaging lidar receiving test system[D]. Beijing: University of Chinese Academy of Sciences, 29-36(2016).
[45] Zhan W D. Study on high-power and high-speed electro-optic modulation technology[D]. Changchun: Changchun University of Science and Technology, 19-27(2011).
[46] Wang D S. Research on the driving technology of the high power and high rate electro-optic modulator[D]. Changchun: Changchun University of Science and Technology, 28-34(2009).