[1] SARGENT E H. Infrared auantum dots[J]. Advanced Materials, 2005, 17(5): 515-522.
[2] HALLS J J M, PICHLER K, FRIEND R H, et al. Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Applied Physics Letters, 1996, 68(22): 3120-3122.
[3] JAYAWARDENA K D, ROZANSKI L J, MILLS C A, et al. Inorganics-in-organics′: recent developments and outlook for 4G polymer solar cells.[J]. Nanoscale, 2013, 5(18): 8411.
[4] NISMY N A, JAYAWARDENA K D, ADIKAARI A A, et al. Photoluminescence quenching in carbon nanotube-polymer/fullerene films: carbon nanotubes as exciton dissociation centres in organic photovoltaics[J]. Advanced Materials, 2011, 23(33): 3796-3800.
[5] PARK Y D, LIM J A, JANG Y,et al. Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors[J]. Organic Electronics, 2008, 9(3): 317-322.
[6] NICOLA F D, SALVATO M, CIRILLO C,et al. 100% internal quantum efficiency in polychiral single-walled carbon nanotube bulk heterojunction/silicon solar cells[J]. Carbon, 2017, 114: 402-410.
[7] DISSANAYAKE N M, ZHONG Z. Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic.[J].Nano Letters, 2011, 11(1): 286.
[8] GRECHKO M, YE Y, MEHLENBACHER R D,et al. Diffusion-assisted photoexcitation transfer in coupled semiconducting carbon nanotube thin films.[J]. Acs Nano, 2014, 8(6): 5383-94.
[9] JI S M, TAKACS C J, SUN Y, et al. Spontaneous formation of bulk heterojunction nanostructures: multiple routes to equivalent morphologies[J]. Nano Letters, 2011, 11(3): 1036-1039.
[10] EBBESEN T W, Physicalproperties of carbon nanotubes[C]. APS March Meeting. APS March Meeting Abstracts, 1997.
[11] PAUL S, RAJBONGSHI B, BORA B, et al. Organic photovoltaic cells using MWCNTs[J]. New Carbon Materials, 2017, 32(1): 27-34.
[12] XU X, XU P, HAO Y, et al. Exploring the effects of optically generated dipoles on organic photodetector infrared detection[J]. Organic Electronics, 2017, 45: 222-226.
[13] LUER L, HOSEINKHANI S, POLLI D,et al. Size and mobility of excitons in (6, 5) carbon|[nbsp]|nanotubes[J]. Nature Physics, 2008, 5(1): 54-58.
[14] HEEGER A J, SARICIFTCI N S, NAMDAS E B. Semiconducting and metallic polymers[M]. Oxford University Press, 2011.
[15] GRONING O, KUTTEL O M, EMMENEGGER C, et al. Field emission properties of carbon nanotubes[J]. Journal of Vacuum Science & Technology B, 2000, 18(2): 665-678.
[16] NICOLA F D, CASTRUCCIP, SCARSELLI M,et al. Multi-fractal hierarchy of single-walled carbon nanotube hydrophobic coatings[J]. Scientific Reports, 2015, 5: 8583.
[18] GUO L Q, LIU H C, LIU J H, et al. First-principles calculation of electronic structure and phonon spectrum of single-walled carbon nanotubes[J]. Journal of Synthetic Crystals, 2015, 44(12): 3777-3782.
[19] MCCARTHY B, COLEMAN J N, CZERW R, et al. A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer[J]. Journal of Physical Chemistry B , 2002, 106(9): 2210-2216.
[20] CARTHY B M, DALTON A B, COLEMAN J N, et al. Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions[J]. Chemical Physics Letters, 2001, 350(1-2): 27-32.
[21] ARRANZ-ANDRES J, BLAU W J. Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices[J]. Carbon, 2008, 46(15): 2067-2075.
[22] AMOLD M S, ZIMMERMAN J D, RENSHAW C K, et al. Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors.[J]. Nano Letters, 2009, 9(9): 3354.
[23] GUILBERT A A, REYNOLDS L X, BRUNO A, et al. Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT: fullerene blend films for organic solar cells.[J]. Acs Nano, 2012, 6(5): 3868-3875.
[24] JANSSEN G, AGUIREE A, GOOVAERTS E, et al. Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents[J]. European Physical Journal Applied Physics, 2007, 37(3): 40-43.
[25] ARREDONDO B, DIOS C D, VERGAZ R, et al. Performance of ITO-free inverted organic bulk heterojunction photodetectors: Comparison with standard device architecture[J]. Organic Electronics, 2013, 14(10): 2484-2490.
[26] NISMY N A, JAYAWARDENA K D G I, ADIKAARI A A D T, et al. Nano-engineering of hybrid organic heterojunctions with carbon nanotubes to improve photovoltaic performance[J]. Organic Electronics, 2015, 22: 35-39.
[27] NIE R, DENG X, FENG L, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias.[J]. Small, 2017, 13(24): 1603260.
[28] WANG S, KHAFIZOV M, TU X, et al. Multiple exciton generation in single-walled carbon nanotubes[J]. Nano Letters, 2010, 10(7): 2381.
[29] BEARD M C, MIDGETT A G, HANNA M C, et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion[J]. Nano Letters, 2010, 10(8): 3019.