• Laser & Optoelectronics Progress
  • Vol. 59, Issue 23, 2306003 (2022)
Hongquan Qu1, Zhengyi Wang1,*, Zhiyong Sheng1, Hongbin Qu2, and Ling Wang3
Author Affiliations
  • 1School of Information Science and Technology, North China University of Technology, Beijing 100144, China
  • 2International Business Department, China Petroleum Pipeline Bureau Engineering Co., Ltd., Langfang 065000, Hebei, China
  • 3Asia Pacific Branch of China Petroleum Pipeline Bureau Engineering Co., Ltd., Langfang 065000, Hebei, China
  • show less
    DOI: 10.3788/LOP202259.2306003 Cite this Article Set citation alerts
    Hongquan Qu, Zhengyi Wang, Zhiyong Sheng, Hongbin Qu, Ling Wang. Fiber Intrusion Signal Classification Based on Gradient Boosting Decision Tree Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2306003 Copy Citation Text show less
    References

    [1] Yan A B, Wan L J, Wu M S. A fast pattern recognition algorithm of optical fiber vibration signal suitable for φ-OTDR system[J]. Acoustics and Electronics Engineering, 6-10(2021).

    [2] Yu Q C. Research and application of optical fiber early warning technology in long distance pipeline[J]. China Instrumentation, 37-40(2020).

    [3] Yang Y, Feng H, Wang Z H et al. Application and development of distributed optical fiber sensing technology in pipeline detection[J]. Electro-Optic Technology Application, 31, 1-9, 76(2016).

    [4] Fu Q J, Yu M, Chang T Y et al. Summarization of pattern recognition method for phase sensitive optical time domain reflecting system[J]. Infrared and Laser Engineering, 47, 0722001(2018).

    [5] Zhou Z C, Liu K, Jiang J F et al. Optical fiber vibration-sensing event recognition based on CLDNN[J]. Acta Optica Sinica, 41, 1306019(2021).

    [6] Ma Z, Wang Y X, Jiang J F et al. Research on dynamic range expansion method of fiber-optic distributed acoustic sensing[J]. Acta Optica Sinica, 41, 1306008(2021).

    [7] Yu F S, Lv X Y, Mo J Q. The two stage intrusion signal recognition of optical fiber based on joint eigenvectors[J]. Laser Journal, 40, 15-19(2019).

    [8] Wang X Q, Huang D F, Yi W S et al. Investigation on pattern method of φ-OTDR fiber vibration sensor system based on SVM[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 44, 14-21(2021).

    [9] Xu J W, Yang Y. A survey of ensemble learning approaches[J]. Journal of Yunnan University (Natural Sciences Edition), 40, 1082-1092(2018).

    [10] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 55, 119-139(1997).

    [11] Singh P, Joshi S D, Patney R K et al. The Fourier decomposition method for nonlinear and non-stationary time series analysis[J]. Proceedings. Mathematical, Physical, and Engineering Sciences, 473, 20160871(2017).

    [12] Zhang G R, Wang X Y, Guo W B. Fault diagnosis method of rolling bearing based on Fourier decomposition method and 1.5-dimensional Teager energy spectrum[J]. Journal of Mechanical Transmission, 41, 191-196(2017).

    [13] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 88, 174102(2002).

    [14] Ren Y, Huang J, Hu L M et al. Denoising algorithm of hydro-generator set based on Fourier decomposition and permutation entropy[J]. Water Power, 46, 96-99, 116(2020).

    [15] Pincus S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences of the United States of America, 88, 2297-2301(1991).

    [16] Qu H Q, Gong D J, Zhang C N et al. Feature extraction and recognition algorithm for fiber intrusion signals[J]. Laser & Optoelectronics Progress, 56, 130601(2019).

    [17] Yang X, Wang Z Z, Zhou Z Y et al. Lithology classification of acidic volcanic rocks based on parameter-optimized AdaBoost algorithm[J]. Acta Petrolei Sinica, 40, 457-467(2019).

    [18] Yang X W, Ma Z, Yuan S. Multi-class Adaboost algorithm based on the adjusted weak classifier[J]. Journal of Electronics & Information Technology, 38, 373-380(2016).

    [19] Friedman J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 29, 1189-1232(2001).

    [20] Li X D, Chen W Z. Classification of epileptic EEG signals based on frequency slice wavelet transform and gradient boosting decision tree[J]. Journal of Jilin University (Information Science Edition), 37, 186-193(2019).

    Hongquan Qu, Zhengyi Wang, Zhiyong Sheng, Hongbin Qu, Ling Wang. Fiber Intrusion Signal Classification Based on Gradient Boosting Decision Tree Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(23): 2306003
    Download Citation