• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 5, 2142001 (2021)
Natalia Kazachkina1, Julia Lymar1, Vladislav Shcheslavskiy2,3, and Alexander Savitsky1
Author Affiliations
  • 1A.N. Bach Institute of Biochemistry Research Center of Biotechnology of the Russian Academy of Sciences Moscow 119071, Russian Federation
  • 2Institute of Experimental Oncology and Biomedical Technologies Privolzhsky Research Medical University Sq, Minin and Pozharsky, 10/1 603005 Nizhny Novgorod Russian Federation
  • 3Becker & Hickl GmbH Nunsdorfer Ring 7-9 12277 Berlin, Germany
  • show less
    DOI: 10.1142/s1793545821420013 Cite this Article
    Natalia Kazachkina, Julia Lymar, Vladislav Shcheslavskiy, Alexander Savitsky. A pilot study of the dynamics of tissue oxygenation in vivo using time-resolved phosphorescence imaging[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2142001 Copy Citation Text show less
    References

    [1] Z. Li, Y. Kang, "Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells," Cancer Cell 15(6), 501–513 (2009).

    [2] X. Lu, Y. Kang, "Hypoxia and hypoxia-inducible factors: Master regulators of metastasis," Clin. Cancer Res. 16(24), 5928–5935 (2010).

    [3] S. Dadgar, J. R. Troncoso, N. Rajaram, "Optical spectroscopic sensing of tumor hypoxia," J. Biomed. Opt. 23(6), 067001 (2018).

    [4] J. A. Nagy, S.-H. Chang, A. M. Dvorak, H. F. Dvorak, "Why are tumor blood vessels abnormal and why is it important to know?" Br. J. Cancer 100, 865–869 (2009).

    [5] N. Campillo, B. Falcones, J. Otero, R. Colinal, D. Goza, D. Navajas, R. Farre, I. Almendros, "Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell. crosstalk: Novel experimental setting and proof of concept," Front. Oncol. 9 (2019), doi: 10.3389/fonc.2019.00043.

    [6] P. Babilas, V. Schacht, G. Liebsch, O. S. Wolfbeis, M. Landthaler, R.-M. Szeimies, C. Abels, "Effects of light fractionation and different fluence rates on photodynamic therapy with 5-aminolaevulinic acid in vivo," Br. J. Cancer 88, 1462–1469 (2003). DOI: 10.1038/sj.bjc.6600910.

    [7] S. Schreml, R. J. Meier, M. Kirschbaum, S. C. Kong, S. Gehmert, O. Felthaus, S. Kuchler, J. R. Sharpe, K. W€oltje, K. T. Wei?, M. Albert, U. Seidl, J. Schr€oder, C. Morsczeck, L. Prantl, C. Duschl, S. F. Pedersen, M. Gosau, M. Berneburg, O. S. Wolfbeis, M. Landthaler, P. Babilas, "Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair," Theranostics 4, 721–735 (2014), doi: 10.7150/ thno.90527.

    [8] P. Babilas, G. Liebsch, V. Schacht, I. Klimant, O. S. Wolfbeis, R.-M. S. Szeimies, C. Abels, "In vivo phosphorescence imaging of pO2 using planar oxygen sensors," Microcirculation 12, 477–487 (2005), doi: 10.1080/10739680591003314.

    [9] M. Nordsmark, S. M. Bentzen, J. Overgaard, "Measurement of human tumour oxygenation status by a polarographic needle electrode: An analysis of inter- and intratumour heterogeneity," Acta Oncol. 33, 383–389 (1994), doi: 10.3109/02841869409098433.

    [10] D. B. Papkovsky, A. V. Zhdanov, A. Fercher, R. I. Dmitriev, J. Hynes (Eds.), Phosphorescent Oxygen-Sensitive Probes, Springer briefs in Biochemistry and Molecular Biology, Springer, Basel (2012).

    [11] X.-D. Wang, O. S. Wolfbeis, "Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications," Chem. Soc. Rev. 43(10), 3666–3761 (2014).

    [12] W. Wu, S. Ji, H. Guo, P. Song, K. Han, L. Chi, J. Shao, J. Zhao, "Tuning the emission properties of cyclometalated platinum(II) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing," J. Mater. Chem. 20(43), 9775–9786 (2010).

    [13] H. Kautsky, "Quenching of luminescence by oxygen," Trans. Faraday Soc. 35, 216–219 (1939).

    [14] S. Borisov, M. Quaranta, I. Klimant, "Indicators for optical oxygen sensors," BIOREV 1, 1–70 (2014).

    [15] P. Alford, M. J. Cook, A. P. Lewis, G. S. G. McAuli?e, V. Skarda, A. J. Thomson, J. L. Glasper, D. J. Robbins, "Luminescent metal complexes. Part 5. Luminescence properites of ring-substituted 1,10- phenanthroline tris-complexes of ruthenium (II)," J. Chem. Soc. Perkin Trans. 2, 705–709 (1985).

    [16] S. Borisov, G. Nuss, I. Klimant, "Red light-excitable oxygen sensing materials based on platinum(II) and palladium(II) benzoporphyrins," Anal. Chem. 80(24), 9435–9442 (2008).

    [17] P. Djurovich, D. Murphy, M. E. Thompson, B. Hernandez, R. Gao, P. L. Hunt, M. Selke, "Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: Quantum yields, quenching rates and correlation with electronic structures," Dalton Trans. 34, 3763–3770 (2007).

    [18] V. I. Shcheslavskiy, A. Neubauer, R. Bukowiecki, F. Dinter, W. Becker, "Combined fluorescence and phosphorescence lifetime imaging," Appl. Phys. Lett. 108, 091111 (2016).

    [19] V. I. Shcheslavskiy, M. V. Shirmanova, V. V. Dudenkova, K. A. Lukyanov, A. I. Gavrina, A. V. Shumilova, E. Zagaynova, W. Becker, "Fluorescence time-resolved macroimaging," Opt. Lett. Vol. 43, pp. 3152–3155 (2018).

    [20] V. Zherdeva, N. I. Kazachkina, V. Shcheslavskiy, A. P. Savitsky, J. Biomed. Opt. 23(3), 1–11 (2018).

    [21] S. Rasheed, Morphological transformation of mouse and rat embryo cells in vitro by an agent from S37 ascites tumour, Br. J. Cancer 25, 142–148 (1970).

    [22] T. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, S. A. Vinogradov, "Two new "protected" oxyphors for biological oximetry: Properties and application in tumor imaging," Anal. Chem. 83(22), 8756–8765 (2011).

    [23] J. Mottram, "A factor of importance in the radio sensitivity of tumours," Br. J. Radiol. 9(105), 606– 614 (1936).

    [24] L. Gray, A. D. Conger, M. Ebert, S. Hornsey, O. C. Scott, "The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy," Br. J. Radiol. 26(312), 638–648 (1953).

    [25] M. Hockel, P. Vaupel, "Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects," J. Natl. Cancer Inst. 93(4), 266–276 (2001).

    [26] B. Moeller, Y. Cao, C. Li, M. Dewhirst, "Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules," Cancer Cell 5(5), 429–441 (2004).

    [27] M. Diehn, R. W. Cho, N. A. Lobo, T. Kalisky, M. Jo Dorie, A. N. Kulp, D. Qian, J. S. Lam, L. E. Ailles, M. Wong, B. Joshua, M. J. Kaplan, I. Wapnir, F. M. Dirbas, G. Somlo, C. Garberoglio, B. Paz, J. Shen, S. K. Lau, S. R. Quake, J. M. Brown, I. L. Weissman, M. F. Clarke, "Association of reactive oxygen species levels and radioresistance in cancer stem cells," Nature 458(7239), 780–783 (2009).

    [28] J. C. Walsh, A. Lebedev, E. Aten, K. Madsen, L. Marciano, H. C. Kolb, "The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities," Antioxid. Redox Signal. 21(10), 1516– 1554 (2014).

    [29] F. Jin, U. Brockmeier, F. Otterbach, E. Metzen, "New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: Hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation," Mol. Cancer Res. 10(8), 1021–1031 (2012).

    [30] D. Rischin, R. J. Hicks, R. Fisher, D. Binns, J. Corry, S. Porceddu, L. J. Peters, "Trans-Tasman Radiation Oncology Group Study 98.02. Prognostic significance of [18F]-mis-onidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned tochemoradiation with or without tirapazamine: A substudy of Trans-Tasman Radiation Oncology Group Study 98.02," J. Clin. Oncol. 24 (13), 2098–2104 (2006).

    [31] K. Wang, S. Mitra, T. Foster, "Photodynamic dose does not correlate with long-term tumor response to mTHPC-PDT performed at several drug-light interval," Med. Phys. 35(8), 3518–3526 (2008).

    Natalia Kazachkina, Julia Lymar, Vladislav Shcheslavskiy, Alexander Savitsky. A pilot study of the dynamics of tissue oxygenation in vivo using time-resolved phosphorescence imaging[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2142001
    Download Citation