• Laser & Optoelectronics Progress
  • Vol. 60, Issue 16, 1612002 (2023)
Fengsui Wang1,2,3,*, Lei Xiong1,2,3, and Yaping Qian1,2,3
Author Affiliations
  • 1School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, China
  • 2Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Wuhu 241000, Anhui, China
  • 3Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Wuhu 241000, Anhui, China
  • show less
    DOI: 10.3788/LOP222627 Cite this Article Set citation alerts
    Fengsui Wang, Lei Xiong, Yaping Qian. Multiscale Monocular Three-Dimensional Object Detection Algorithm Incorporating Instance Depth[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1612002 Copy Citation Text show less
    Instance depth learning module
    Fig. 1. Instance depth learning module
    Multiscale sensing module
    Fig. 2. Multiscale sensing module
    Network structural diagram
    Fig. 3. Network structural diagram
    Visualization results of KITTI
    Fig. 4. Visualization results of KITTI
    MethodExtra dataAP40(3D@RIOU≥0.7)AP40(BEV@RIOU≥0.7)
    EasyModerateHardEasyModerateHard
    AM3D24Depth16.5010.749.5225.0317.3214.91
    PatchNet4Depth15.6811.1210.1722.9716.8614.97
    DDMP-3D5Depth19.7112.789.8028.0817.8913.44
    Reference[25Depth20.2813.129.56
    Kinematic3D26Multi-frames19.0712.729.1726.6917.5213.10
    CaDDN27LiDAR19.1713.4111.4627.9418.9117.19
    MonoRUn28LiDAR19.6512.3010.5827.9417.3415.24
    MonoGRNet11None9.615.744.2518.1911.178.73
    MonoDIS23None10.377.946.4017.2313.1911.12
    Reference[29None20.8914.4912.1929.5720.7717.88
    MonoPair6None13.049.998.6519.2814.8312.89
    FADNet30None16.379.928.0523.0014.2212.56
    MonoDLE9None17.2312.2610.2924.7918.8916.00
    MonoGround31None19.4814.3612.6230.0720.4717.74
    MonoFlex7None19.9413.8912.0728.2319.7516.89
    MonoEF32None21.2913.8711.7129.0319.7017.26
    Reference[33None21.6513.259.9129.8117.9813.08
    GUPNet8None22.2615.0213.1230.2921.1918.20
    MonoCon34None22.5016.4913.9531.1222.1019.00
    Proposed methodNone22.5016.1913.4932.4422.9719.82
    ImprovementDepth+2.22+3.07+3.32+4.36+5.08+4.85
    Multi-frames+3.43+3.47+4.78+5.75+5.45+6.72
    LiDAR+2.85+2.78+2.03+4.5+4.06+2.63
    None+0-0.3-0.46+1.32+0.87+0.82
    Table 1. Performance of the Car category on the KITTI test set
    MethodAP40 /%(3D@RIOU=0.7)AP40 /%(BEV@RIOU=0.7)AP40 /%(3D@RIOU=0.5)AP40 /%(BEV@RIOU=0.5)Runtime /ms
    EasyModerateHardEasyModerateHardEasyModerateHardEasyModerateHard
    Improvement+5.14+4.13+3.31+5.25+3.98+3.03+8.81+4.07+4.73+7.41+4.49+4.19
    CenterNet100.600.660.773.463.313.2120.0017.5015.5734.3627.9124.65
    MonoGRNet11.907.565.7619.7212.8110.1547.5932.2825.5048.5335.9428.5960
    MonoDIS11.067.606.3718.4512.5810.66
    M3D-RPN14.5311.078.6520.8515.6211.8848.5335.9428.5953.3539.6031.76161
    MonoPair16.2812.3010.4224.1218.1715.7655.3842.3937.9961.0647.6341.9257
    MonoDLE17.4513.6611.6824.9719.3317.0155.4143.4237.8160.7346.8741.8940
    Proposed method22.5917.7914.9930.2223.3120.0464.2247.4942.7268.4752.1246.1145
    Table 2. Performance of the Car category on the KITTI validation set
    MethodAP40(3D)AP40(BEV)
    EasyModerateHardEasyModerateHard
    Improvement+5.14+4.13+3.31+5.25+3.98+3.03
    Baseline17.4513.6611.6824.9719.3317.01
    +ASPP18.0414.7212.4725.6020.8418.20
    +PSP18.9814.7312.3825.6120.7518.06
    +MSS20.4815.8914.0628.5822.4119.46
    +IDLM21.7616.1914.2428.7122.4419.43
    +MSS+IDLM22.5917.7914.9930.2223.3120.04
    Table 3. Adding Performance Comparison of Different Modules on KITTI validation set
    Fengsui Wang, Lei Xiong, Yaping Qian. Multiscale Monocular Three-Dimensional Object Detection Algorithm Incorporating Instance Depth[J]. Laser & Optoelectronics Progress, 2023, 60(16): 1612002
    Download Citation