[1] Cao Y Q, Meng X B and Li A D 2021 Atomic layer deposition of high-capacity anodes for next-generation lithium-ion batteries and beyond Energy Environ. Mater. 4 363-91
[2] Xiong Q G, Hajjar A, Alshuraiaan B, Izadi M, Altnji S and Shehzad S A 2021 State-of-the-art review of nanofluids in solar collectors: a review based on the type of the dispersed nanoparticles J. Clean. Prod. 310 127528
[3] Sun Q, Lau K C, Geng D S and Meng X B 2018 Atomic and molecular layer deposition for superior lithium-sulfur batteries: strategies, performance, and mechanisms Batter. Supercaps 1 41-68
[4] Zhang S F, Zhang B, Liang H J, Liu Y Q, Qiao Y and Qin Y 2018 Encapsulation of homogeneous catalysts in mesoporous materials using diffusion-limited atomic layer deposition Angew. Chem., Int. Ed. 130 1103-7
[5] Yang J F, Cao K, Gong M, Shan B and Chen R 2020 Atomically decorating of MnOx on palladium nanoparticles towards selective oxidation of benzyl alcohol with high yield J. Catal. 386 60-69
[6] Li S, Xiong J X, Shen J S, Qin Y, Li J, Chu F Q, Kong Y and Deng L H 2015 A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites J. Appl. Polym. Sci. 132 42409
[7] Cao K, Cai J M, Shan B and Chen R 2020 Surface functionalization on nanoparticles via atomic layer deposition Sci. Bull. 65 678-88
[8] Fang F Z 2020 Atomic and close-to-atomic scale manufacturing: perspectives and measures Int. J. Extrem. Manuf. 2 030201
[9] Fang F et al 2020 Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications Adv. Opt. Mater. 8 1902118
[10] Chen R, Li Y C, Cai J M, Cao K and Lee H B R 2020 Atomic level deposition to extend Moore’s law and beyond Int. J. Extrem. Manuf. 2 022002
[11] George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111-31
[12] Munoz-Rojas D, Maindron T, Esteve A, Piallat F, Kools J C S and Decams J M 2019 Speeding up the unique assets of atomic layer deposition Mater. Today Chem. 12 96-120
[13] van Ommen J R, Valverde J M and Pfeffer R 2012 Fluidization of nanopowders: a review J. Nanopart. Res. 14 737
[14] Shabanian J, Jafari R and Chaouki J 2012 Fluidization of ultrafine powders Int. Rev. Chem. Eng. 4 16-50
[15] Zhu X L, Zhang Q, Wang Y and Wei F 2016 Review on the nanoparticle fluidization science and technology Chin. J. Chem. Eng. 24 9-22
[16] Li Z S, Li J W, Liu X and Chen R 2021 Progress in enhanced fluidization process for particle coating via atomic layer deposition Chem. Eng. Process. Process Intensif. 159 108234
[17] van Ommen J R, Grillo F and Grievink J 2019 Scalable manufacturing of nanostructured materials by atomic layer deposition in fluidized bed reactors Comput. Aided Chem. Eng. 46 403-8
[18] van Ommen J R and Goulas A 2019 Atomic layer deposition on particulate materials Mater. Today Chem. 14 100183
[19] Hakim L F, Blackson J, George S M and Weimer A W 2005 Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor Chem. Vapor Depos. 11 420-5
[20] King D M, Spencer I I J A, Liang X H, Hakim L F and Weimer A W 2007 Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry Surf. Coat. Technol. 201 9163-71
[21] Tiznado H, Dominguez D, Munoz-Munoz F, Romo-Herrera J, Machorro R, Contreras O E and Soto G 2014 Pulsed-bed atomic layer deposition setup for powder coating Powder Technol. 267 201-7
[22] Duan C L, Deng Z, Cao K, Yin H F, Shan B and Chen R 2016 Surface passivation of Fe3O4 nanoparticles with Al2O3 via atomic layer deposition in a rotating fluidized bed reactor J. Vac. Sci. Technol. A 34 04C103
[23] Barletta D, Donsi G, Ferrari G, Poletto M and Russo P 2008 The effect of mechanical vibration on gas fluidization of a fine aeratable powder Chem. Eng. Res. Des. 86 359-69
[24] Park S W, Kim J W, Choi H J and Shim J H 2014 Vibration atomic layer deposition for conformal nanoparticle coating J. Vac. Sci. Technol. A 32 01A115
[25] Jin W J, van Ommen J R and Kleijn C R 2019 Moving reaction fronts in fractal nanoparticle agglomerates Chem. Eng. Sci. 206 180-6
[26] van der Hoef M A, van Sint Annaland M, Deen N G and Kuipers J A M 2008 Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy Annu. Rev. Fluid Mech. 40 47-70
[27] Duan C L, Zhu P H, Deng Z, Li Y, Shan B, Fang H S, Feng G and Chen R 2017 Mechanistic modeling study of atomic layer deposition process optimization in a fluidized bed reactor J. Vac. Sci. Technol. A 35 01B102
[28] Wang S Y, Chen Y J, Jia Y B, Tian R C, Sun Q J, Fan J W and Ma Y M 2018 Numerical simulation of flow behavior of particles in a gas-solid stirred fluidized bed Powder Technol. 338 119-28
[29] Kawaguchi T, Tanaka T and Tsuji Y 1998 Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models) Powder Technol. 96 129-38
[30] Wu Y, Liu D Y, Ma J L and Chen X P 2018 Effects of gas-solid drag model on Eulerian-Eulerian CFD simulation of coal combustion in a circulating fluidized bed Powder Technol. 324 48-61
[31] Zhong H B, Zhang Y N, Xiong Q G, Zhang J T, Zhu Y Q, Liang S R, Niu B and Zhang X Y 2020 Two-fluid modeling of a wet spouted fluidized bed with wet restitution coefficient model Powder Technol. 364 363-72
[32] Rossbach V, Padoin N, Meier H F and Soares C 2021 Influence of ultrasonic waves on the gas-solid flow and the solids dispersion in a CFB riser: numerical and experimental study Powder Technol. 389 430-49
[33] Rossbach V, Padoin N, Meier H F and Soares C 2020 Influence of acoustic waves on the solids dispersion in a gas-solid CFB riser: numerical analysis Powder Technol. 359 292-304
[34] Namdarkedenji R, Hashemnia K and Emdad H 2018 Effect of flow pulsation on fluidization degree of gas-solid fluidized beds by using coupled CFD-DEM Adv. Powder Technol. 29 3527-41
[35] Zhang Y, Jia Y, Xu J, Wang J W, Duan C L, Ge W and Zhao Y M 2020 CFD intensification of coal beneficiation process in gas-solid fluidized beds Chem. Eng. Process. Process Intensif. 148 107825
[36] Liu D Y, van Wachem B G M, Mudde R F, Chen X P and van Ommen J R 2016 An adhesive CFD-DEM model for simulating nanoparticle agglomerate fluidization AIChE J. 62 2259-70
[37] Zhu L and Tang Y 2020 Effects of acoustic fields on the dynamics of micron-sized particles in a fluidized bed Powder Technol. 372 625-37
[38] Rahimi M, Shahhosseini S and Movahedirad S 2019 Hydrodynamic and mass transfer investigation of oxidative desulfurization of a model fuel using an ultrasound horn reactor Ultrason. Sonochem. 52 77-87
[39] Liu R, Liu Y and Liu C Z 2013 Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor Chem. Eng. Res. Des. 91 211-20
[40] Khadilkar A, Rozelle P L and Pisupati S V 2014 Models of agglomerate growth in fluidized bed reactors: critical review, status and applications Powder Technol. 264 216-28
[41] Liu D Y, Wang Z, Chen X P and Liu M L 2018 Simulation of agglomerate breakage and restructuring in shear flows: coupled effects of shear gradient, surface energy and initial structure Powder Technol. 336 102-11
[42] Zhao X L, Li S Q, Liu G Q, Yao Q and Marshall J S 2008 DEM simulation of the particle dynamics in two-dimensional spouted beds Powder Technol. 184 205-13
[43] de Martin L and van Ommen J R 2013 A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds J. Nanopart. Res. 15 2055
[44] Fabre A, Salameh S, Ciacchi L C, Kreutzer M T and van Ommen J R 2016 Contact mechanics of highly porous oxide nanoparticle agglomerates J. Nanopart. Res. 18 200
[45] Rahimi M, Movahedirad S and Shahhosseini S 2017 CFD study of the flow pattern in an ultrasonic horn reactor: introducing a realistic vibrating boundary condition Ultrason. Sonochem. 35 359-74
[46] Ge J Q, Ren Y L, Xu X S, Li C, Li Z A and Xiang W F 2021 Numerical and experimental study on the ultrasonic-assisted soft abrasive flow polishing characteristics Int. J. Adv. Manuf. Technol. 112 3215-33
[47] de Sarabia E R F, Gallego-Juarez J A, Rodriguez-Corral G, Elvira-Segura L and Gonzalez-Gómez I 2000 Application of high-power ultrasound to enhance fluid/solid particle separation processes Ultrasonics 38 642-6
[48] Shi Y, Wei J H, Qiu J, Chu H B, Bai W W and Wang G Q 2020 Numerical study of acoustic agglomeration process of droplet aerosol using a three-dimensional CFD-DEM coupled model Powder Technol. 362 37-53
[49] Knoop C, Todorova Z, Tomas J and Fritsching U 2016 Agglomerate fragmentation in high-intensity acoustic standing wave fields Powder Technol. 291 214-22
[50] Ramasamy H V, Sinha S, Park J, Gong M, Aravindan V, Heo J and Lee Y S 2019 Enhancement of electrochemical activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by precisely controlled Al2O3 nanocoatings via atomic layer deposition J. Electrochem. Sci. Technol. 10 196-205