• Journal of Synthetic Crystals
  • Vol. 52, Issue 7, 1308 (2023)
WU Xu1,2, ZHANG Zhen1, ZHANG Zhonghan1, WU Anhua1,2, and SU Liangbi1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    WU Xu, ZHANG Zhen, ZHANG Zhonghan, WU Anhua, SU Liangbi. Laser-Heated Pedestal Growth Method and Characterization of Er∶YAP Single Crystal Fibers[J]. Journal of Synthetic Crystals, 2023, 52(7): 1308 Copy Citation Text show less
    References

    [1] SCHLIESSER A, PICQU N, HNSCH T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449.

    [2] WAYNANT R W, ILEV I K, GANNOT I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2001, 359(1780): 635-644.

    [3] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405.

    [4] BEKMAN H H P T, VAN DEN HEUVEL J C, VAN PUTTEN F J M, et al. Development of a mid-infrared laser for study of infrared countermeasures techniques[C]//SPIE Proceedings, Technologies for Optical Countermeasures. London, United Kingdom. SPIE, 2004: 27-38.

    [5] WYSS C, LTHY W, WEBER H P, et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 1997, 139(4/5/6): 215-218.

    [6] FAN M Q, LI T, ZHAO J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ~3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729.

    [7] POLLACK S A, CHANG D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 1988, 64(6): 2885-2893.

    [8] ZHARIKOV E V, ZHEKOV V I, KULEVSKII L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 μm[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039-1040.

    [9] POLLNAN M, JACKSON S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(1): 30-40.

    [10] NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7-3 μm) bulk lasers: a review[J]. Chinese Optics Letters, 2021, 19(9): 091407.

    [11] UEHARA H, KONISHI D, GOYA K, et al. Power scalable 30-W mid-infrared fluoride fiber amplifier[J]. Optics Letters, 2019, 44(19): 4777-4780.

    [12] ZHANG Z, WU Q H, WANG Y X, et al. Efficient 2.76 μm continuous-wave laser in extremely lightly Er-doped CaF2 single-crystal fiber[J]. Laser Physics Letters, 2020, 17(8): 085801.

    [14] YANG H G, DAI Z W, SUN Z W. Upconversion luminescence and kinetics in Er3+∶YAlO3 under 652.2 nm excitation[J]. Journal of Luminescence, 2007, 124(2): 207-212.

    [15] DONG Q, ZHAO G J, CHEN J Y, et al. Growth and anisotropic thermal properties of biaxial Ho∶YAlO3 crystal[J]. Journal of Applied Physics, 2010, 108(2): 023108.

    [16] YAO W C, UEHARA H, KAWASE H, et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2 920 nm[J]. Optics Express, 2020, 28(13): 19000.

    [17] LI E H, UEHARA H, YAO W C, et al. High-efficiency, continuous-wave Fe∶ZnSe mid-IR laser end pumped by an Er∶YAP laser[J]. Optics Express, 2021, 29(26): 44118.

    [18] QUAN C, SUN D L, ZHANG H L, et al. Growth, spectroscopy and high-power laser operation of Er∶YAP crystal with different Er3+ concentrations[J]. Journal of Luminescence, 2022, 251: 119122.

    [19] SHAW L B, BAYYA S, KIM W, et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers[C]//Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich. Washington, D.C.: OSA, 2018: SoW2H. 3.

    [20] LI Y A, MILLER K, JOHNSON E G, et al. Lasing characteristics of Ho∶YAG single crystal fiber[J]. Optics Express, 2016, 24(9): 9751.

    [22] ROMERO J J, MONTOYA E, BAUS L E, et al. Multiwavelength laser action of Nd3+∶YAlO3 single crystals grown by the laser heated pedestal growth method[J]. Optical Materials, 2004, 24(4): 643-650.

    [23] TONG L M. Growth of high-quality Y2O3-ZrO2 single-crystal optical fibers for ultra-high-temperature fiber-optic sensors[J]. Journal of Crystal Growth, 2000, 217(3): 281-286.

    [25] WANG S Y, YIN Y Q, WANG T, et al. Anisotropic bubble defects and stress distribution in LuAG single-crystal fibers grown by the laser-heated pedestal growth method[J]. CrystEngComm, 2022, 24(19): 3503-3510.

    [27] BRICE J C. The cracking of Czochralski-grown crystals[J]. Journal of Crystal Growth, 1977, 42: 427-430.

    [28] GHEZAL E A, LI H, NEHARI A, et al. Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique[J]. Crystal Growth & Design, 2012, 12(8): 4098-4103.

    [29] ZHANG Z, MA F K, GUO X S, et al. Mid-infrared spectral properties and laser performance of Er3+ doped CaxSr1-xF2 single crystals[J]. Optical Materials Express, 2018, 8(12): 3820.

    [30] HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226: 117502.

    [31] JENSEN T, DIENING A, HUBER G, et al. Investigation of diode-pumped 2.8-μm Er∶LiYF4 lasers with various doping levels[J]. Optics Letters, 1996, 21(8): 585-587.

    WU Xu, ZHANG Zhen, ZHANG Zhonghan, WU Anhua, SU Liangbi. Laser-Heated Pedestal Growth Method and Characterization of Er∶YAP Single Crystal Fibers[J]. Journal of Synthetic Crystals, 2023, 52(7): 1308
    Download Citation