Chao Ji, Xinbo Huang, Wen Cao, Yongcan Zhu, Ye Zhang. Salient Region Detection of Images Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091007

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 56, Issue 9, 091007 (2019)

Fig. 1. Partition results for different k values. (a) Original image; (b) k=50; (c) k=100; (d) k=200
![Extraction of edge features. (a) Original images; (b) Canny operator; (c) Sobel operator; (d) Ref. [14]; (e) proposed algorithm](/richHtml/lop/2019/56/9/091007/img_2.jpg)
Fig. 2. Extraction of edge features. (a) Original images; (b) Canny operator; (c) Sobel operator; (d) Ref. [14]; (e) proposed algorithm

Fig. 3. Extraction of salient color features. (a) Original images; (b) blurred histogram; (c) global color feature; (d) salient region; (e) results by proposed algorithm

Fig. 4. Structural diagram of network synthesis

Fig. 5. Feature detection based on loop network structure. (a) Original images; (b) salient regions without loop module; (c) salient regions with loop module; (d) ground truth figures

Fig. 6. Results of proposed algorithm and other algorithms. (a) Original images; (b) SUN algorithm; (c) SEG algorithm; (d) RC algorithm; (e) CA algorithm; (f) MZ algorithm; (g) AC algorithm; (h) LC algorithm; (i) FT algorithm; (j) DSR algorithm; (k) HC algorithm; (l) CSD algorithm; (m) GU algorithm; (n) proposed algorithm; (o) ground truth figures
|
Table 1. Comparison of quantitative results
|
Table 2. Average computation time of different methods on 10 images

Set citation alerts for the article
Please enter your email address