• Optical Instruments
  • Vol. 46, Issue 5, 9 (2024)
Yuan LIU, Baicheng LI*, and Chunbo WU
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202308280111 Cite this Article
    Yuan LIU, Baicheng LI, Chunbo WU. Retinal blood vessel segmentation algorithm based on improved U-Net[J]. Optical Instruments, 2024, 46(5): 9 Copy Citation Text show less
    Structure of network model
    Fig. 1. Structure of network model
    Residual module
    Fig. 2. Residual module
    Detail enhancement model
    Fig. 3. Detail enhancement model
    Results of U-Net and our algorithm on DRIVE
    Fig. 4. Results of U-Net and our algorithm on DRIVE
    Comparison of partial segmentation
    Fig. 5. Comparison of partial segmentation
    Line chart for comparison of different algorithm indicators
    Fig. 6. Line chart for comparison of different algorithm indicators
    Comparison of segmentation on DRIVE
    Fig. 7. Comparison of segmentation on DRIVE
    名称参数配置
    优化器Adam
    初始学习率0.001
    训练步数200
    批处理大小4
    Table 1. Experimental parameter configuration
    名称缩写公式含义
    敏感性Se$ {\mathrm{Se}}=\dfrac{{\mathrm{TP}}}{{\mathrm{TP}}+{\mathrm{FN}}} $血管被正确分割的指数
    特异性Sp$ {\mathrm{Sp}}=\dfrac{{\mathrm{TN}}}{{\mathrm{TN}}+{\mathrm{FP}}} $图像背景被正确分割的指数
    准确性Acc$ {\mathrm{Acc}}=\dfrac{{\mathrm{TP}}+{\mathrm{TN}}}{{\mathrm{TP}}+{\mathrm{TN}}+{\mathrm{FP}}+{\mathrm{FN}}} $图像整体被正确分割的指数
    F1值F1${\mathrm{ F}}1=\dfrac{{\mathrm{2TP}}}{{\mathrm{2TP}}+{\mathrm{FP}}+{\mathrm{FN}}} $衡量分割结果和标准结果之间相似性的指数
    Table 2. Performance indicators
    AlgorithmAccSeSpF1
    U-Net0.96270.81590.98060.8137
    U-Net+Res0.96490.81680.98590.8192
    U-Net+DEA0.96590.83560.98310.8254
    Our algorithm0.96730.83730.98430.8293
    Table 3. Results of different structural models based on U-Net
    MethodAccSeSpF1
    AG-Net[18]0.96540.76380.97390.8132
    CE-Net[19]0.96310.77460.97610.8156
    DUNet[20]0.95790.74390.98720.8265
    SCS-Net[21]0.97680.81570.97210.8241
    CA-Net[22]0.96170.80420.97430.8104
    ASU-Net[23]0.96780.81930.97890.8183
    PVT-CASCADE[24]0.97360.82650.97730.8231
    UNet-2022[25]0.96280.80730.98120.8117
    Our method0.96730.83730.98430.8293
    Table 4. Results of different algorithms on DRIVE