• Acta Physica Sinica
  • Vol. 68, Issue 4, 043703-1 (2019)
Xing-Dong Zhao1, Ying-Ying Zhang1, and Wu-Ming Liu2,*
Author Affiliations
  • 1College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
  • 2Laboratory of Condensed Matter Theory and Materials Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.7498/aps.68.20190153 Cite this Article
    Xing-Dong Zhao, Ying-Ying Zhang, Wu-Ming Liu. Magnetic excitation of ultra-cold atoms trapped in optical lattice[J]. Acta Physica Sinica, 2019, 68(4): 043703-1 Copy Citation Text show less

    Abstract

    Spinor condensates trapped in optical lattices have become potential candidates for multi-bit quantum computation due to their long coherence and controllability. But first, we need to understand the generation and regulation of spin and magnetism in the system. This paper reviews the origin and manipulation of the magnetism of atomic spin chains in optical lattices. The theoretical study of the whole process is described in this paper, including laser cooling, the spinor Bose-Einstein condensate preparations, the optical lattice, and the atomic spin chain. Then, the generation and manipulation of magnetic excitations are discussed, including the preparation of magnetic solitons. Finally, we discuss how to apply atomic spin chains to quantum simulation. The theoretical study of magnetic excitations in optical lattices will play a guiding role when the optical lattice is used in cold atomic physics, condensed matter physics and quantum information.
    $H^=drΨ^(r)[22m2+Vext]Ψ^(r)+12drdrΨ^(r)Ψ^(r)V(rr)Ψ^(r)Ψ^(r), $(1)

    View in Article

    ${\rm{i}}\hbar \frac{\partial }{{\partial t}}\Phi ({{r}},t) = \left( { - \frac{{{\hbar ^2}}}{{2m}}{\nabla ^2} + {V_{{\rm{ext}}}} + g{{\left| {\Phi ({{r}},t)} \right|}^2}} \right)\Phi ({{r}},t),$(2)

    View in Article

    $H^=drΨ^(r)[22m2+Vext]Ψ^(r)+Ωα,β,μ,νdrdrΨ^α(r)Ψ^β(r)×V(rr)Ψ^μ(r)Ψ^ν(r), $(3)

    View in Article

    $H^=αdrΨ^α(r)[22m2+Vext]Ψ^α(r)+c02α,βdrΨ^α(r)Ψ^β(r)Ψ^β(r)Ψ^α(r)+c22α,β,α,βdrΨ^α(r)Ψ^β(r)×FααFββΨ^β(r)Ψ^α(r), $(4)

    View in Article

    $E=d3r22m{[n]2+[ζ(r)]2n}d3r{[μU(r)]nn22[c0+c2F2]} $(5)

    View in Article

    ${K_{\rm{s}}} = c{\left\langle {{F}} \right\rangle ^2} - p\left\langle {{F_z}} \right\rangle + q\left\langle {{F_z}^2} \right\rangle $(6)

    View in Article

    $H^=Ji,jαa^αi+a^αj++iαεia^αi+a^αi++U02iα,βa^αi+a^βi+a^βia^αi+U22iα,β,α,βa^αi+a^βi+FααFββa^βia^αi, $(7)

    View in Article

    $Vddij=μ04πdrdr|ϕ(rri)|2|ϕ(rrj)|2×[μiμj|rr|33[μi(rr)μj(rr)]|rr|5],$(8)

    View in Article

    $H=i[λaS^i2γBjiλijS^iS^j3γBjiS^iΛijS^jγBS^iB]$(9)

    View in Article

    $H1d=λaS^2γBS^[(Bz+2jiλijSjz)z^+(Bx2jiλijSjx)x^jiλijSjyy^], $(10)

    View in Article

    ${H_{2d}} = \sum\limits_{ij} {\left[ {\frac{{{\lambda _a}}}{2}\hat {{S}}_{ij}^2 + \frac{{{\gamma _B}{\mu _0}}}{{4{\text{π}}}}\sum\limits_{kl \ne ij} {\hat {{S}}_{{\rm{ij}}}^{\rm{T}}{\Lambda _{ij,kl}}{{\hat {{S}}}_{kl}}} } \right]} .$(11)

    View in Article

    $Qmmnn=3γΔU0exp(r2+r2WL2)cos(kLy)×cos(kLy)×[49δmnδmne0×W(rr)e0dmn×W(rr)dmn], $(12)

    View in Article

    $H=i[λaS^i2γBS^iBjiJijzS^izS^jzjiJij(S^iS^i++S^i+S^j)],$(13)

    View in Article

    $Jijz=μ0γB216π2drdr|r|23y2|r|5|ϕi(r)|2×|ϕj(rr)|2,$(14)

    View in Article

    $Jij=U1442kL3drdrfc(r)×exp(r2+|rr|2WL2)cos(kLy)×cos[kL(yy)]×e+1W(r)e1×|ϕi(r)|2|ϕj(rr)|2+12Jijz. $(15)

    View in Article

    ${\rm{i}}\frac{\partial }{{\partial t}}\hat S_q^{( - )} = ({\omega _0} + \Delta {\omega _q})\hat S_q^{( - )} - \sum\limits_{j \ne n} {{\chi _{qj}}\hat S_q^{( - )}} ,$(16)

    View in Article

    ${\rm{i}}\frac{{\partial S(y,t)}}{{\partial t}} = \left[ { - \frac{{{\beta _1}}}{2}\frac{{{\partial ^2}}}{{\partial {y^2}}} - {\beta _0} + \omega (y)} \right]S(y,t).$(17)

    View in Article

    $H = \sum\limits_k {{\omega _k}\widehat a_k^\dagger } {\widehat a_k} + \sum\limits_{k,k',q} {{V_{k,k',q}}\widehat a_{k - q}^\dagger \widehat a_{k' + q}^\dagger } {\widehat a_{k'}}{\widehat a_k}.$(18)

    View in Article

    $Nk(t)=sinh2(γk)+sinh2(λk)+2sinh2(γk)sinh2(λk)12sinh(2γk)sinh(2λk)|sin(wkt)|. $(19)

    View in Article

    $tε(r,t)E^(r,t)=×H^(r,t),tH^(r,t)=×ε(r,t)E^(r,t). $(20)

    View in Article

    Xing-Dong Zhao, Ying-Ying Zhang, Wu-Ming Liu. Magnetic excitation of ultra-cold atoms trapped in optical lattice[J]. Acta Physica Sinica, 2019, 68(4): 043703-1
    Download Citation