• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1210013 (2023)
Xiangping Wu1,2,*, Qingqing Gao1, Shaowei Huang1, and Ke Wang1
Author Affiliations
  • 1College of Information Engineering, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • 2Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province Hangzhou, China Jiliang University, 310018, Zhejiang, China
  • show less
    DOI: 10.3788/LOP221632 Cite this Article Set citation alerts
    Xiangping Wu, Qingqing Gao, Shaowei Huang, Ke Wang. Adaptive Retinex Image Defogging Algorithm Based on Depth-of-Field Information[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210013 Copy Citation Text show less
    References

    [1] Wu Y Q, Shi P F. Approach on image contrast enhancement based on wavelet transform[J]. Infrared and Laser Engineering, 32, 4-7(2003).

    [2] Lee J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 165-168(1980).

    [3] Land E H, McCann J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 61, 1-11(1971).

    [4] Land E H. The retinex theory of color vision[J]. Scientific America, 237, 108-128(1977).

    [5] Zhang S W, Zeng P, Luo X M et al. Multi-scale retinex with color restoration and detail compensation[J]. Journal of Xi’an Jiaotong University, 46, 32-37(2012).

    [6] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 2341-2353(2011).

    [7] Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 24, 3522-3533(2015).

    [8] Ye K, Ding Y. A dehazing method combining physical model and depth map estimation[J]. Journal of Chengdu University of Information Technology, 36, 390-395(2021).

    [9] Cai B L, Xu X M, Jia K et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 25, 5187-5198(2016).

    [10] Li B Y, Peng X L, Wang Z Y et al. An all-in-one network for dehazing and beyond[EB/OL]. https://arxiv.org/abs/1707.06543v1

    [11] Yang Y, Zhang J L. Image dehazing algorithm based on haze distribution and adaptive attenuation[J]. Laser & Optoelectronics Progress, 58, 2210012(2021).

    [12] Li Z H, Chen C C, Jin H Y. Guided filter improved reconstruction multiscale Retinex algorithm[J]. Fire Control & Command Control, 43, 127-131(2018).

    [13] Lee J H, Han M K, Ko D W et al. From big to small: multi-scale local planar guidance for monocular depth estimation[EB/OL]. https://arxiv.org/abs/1907.10326

    [14] Huang H. Image dehazing algorithm based on dark channel prior and Retinex[D](2020).

    [15] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processing, 6, 451-462(1997).

    [16] Mei K, Liu X Q, Mu C et al. Fast defogging algorithm based on adaptive exponentially weighted moving average filtering[J]. Chinese Journal of Lasers, 47, 0109001(2020).

    [17] Li Y, Chen X W, Wang Y et al. Progress in deep learning based monocular image depth estimation[J]. Laser & Optoelectronics Progress, 56, 190001(2019).

    [18] Zhang R. Research on image enhancement algorithm based on Retinex theory[D], 29-34(2017).

    [19] Guo H, Xu X T, Li B. Study on image dehazing methods based on dark channel prior[J]. Acta Optica Sinica, 38, 0410002(2018).

    Xiangping Wu, Qingqing Gao, Shaowei Huang, Ke Wang. Adaptive Retinex Image Defogging Algorithm Based on Depth-of-Field Information[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210013
    Download Citation