• Laser & Optoelectronics Progress
  • Vol. 60, Issue 10, 1010004 (2023)
Shuai Yuan, Yanan Sun*, Weifeng He, and Shikui Tu
Author Affiliations
  • School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP213289 Cite this Article Set citation alerts
    Shuai Yuan, Yanan Sun, Weifeng He, Shikui Tu. Hyperspectral On-Board Classification Algorithm Based on Multiscale Feature Extraction[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010004 Copy Citation Text show less
    Spatial feature extraction method based on multiscale local maximum
    Fig. 1. Spatial feature extraction method based on multiscale local maximum
    Classification maps of each algorithm on Indian Pines dataset. (a) Ground truth; (b) SVM; (c) RF; (d) CNN1D; (e) CNN2D; (f) HybridSN; (g) A2S2K-ResNet; (h) LBP-RF; (i) EMP-RF; (j) MF-RF
    Fig. 2. Classification maps of each algorithm on Indian Pines dataset. (a) Ground truth; (b) SVM; (c) RF; (d) CNN1D; (e) CNN2D; (f) HybridSN; (g) A2S2K-ResNet; (h) LBP-RF; (i) EMP-RF; (j) MF-RF
    Classification maps of each algorithm on Pavia University dataset. (a) Ground truth; (b) SVM; (c) RF; (d) CNN1D; (e) CNN2D; (f) HybridSN; (g) A2S2K-ResNet; (h) LBP-RF; (i) EMP-RF; (j) MF-RF
    Fig. 3. Classification maps of each algorithm on Pavia University dataset. (a) Ground truth; (b) SVM; (c) RF; (d) CNN1D; (e) CNN2D; (f) HybridSN; (g) A2S2K-ResNet; (h) LBP-RF; (i) EMP-RF; (j) MF-RF
    Number of operations in the classification process of each algorithm. (a) Spectral algorithms; (b) one-stage spatial-spectral algorithms; (c) two-stage spatial-spectral algorithms
    Fig. 4. Number of operations in the classification process of each algorithm. (a) Spectral algorithms; (b) one-stage spatial-spectral algorithms; (c) two-stage spatial-spectral algorithms
    Energy consumption of each algorithm in the classification process. (a) Spectral algorithms; (b) one-stage spatial-spectral algorithms; (c) two-stage spatial-spectral algorithms
    Fig. 5. Energy consumption of each algorithm in the classification process. (a) Spectral algorithms; (b) one-stage spatial-spectral algorithms; (c) two-stage spatial-spectral algorithms
    AlgorithmNumber of operations
    ExpMulAddCmp
    Spectral algorithm(k:number of features,l:number of classes)SVMMkM+2MkM+l
    M:number of support vectors
    RFNDN
    D:average depth of trees,N:number of trees
    CNN1Dk-q+1qlk-q+1ql
    q:number of values in each filter

    One-stage spatial-spectral algorithm

    K:kernel size,

    Cin:number of input channels,

    Cout:number of output channels)

    Each convolution layerK2×Cin×CoutK2×Cin×Cout
    Two-stage spatial-spectral algorithm(k':number of features)LBP-RFNk'p+DN
    p:number of points in LBP,D/N:same as RF
    EMP-RFMulPCAAddPCA+N1mSi2+DN
    MulPCAAddPCA:number of Mul/Add in PCA,Si:size of each structuring element,m:number of structuring elements,D/N:same as RF
    MF-RFN2rmax+12+DN
    rmax:radius of the largest filter,D/N:same as RF
    Table 1. Statistics of operation type and number of operations of different algorithms
    ClassSpectral algorithmOne-stage spatial-spectral algorithmTwo-stage spatial-spectral algorithm
    SVMRFCNN1DCNN2DHybridSNA2S2K-ResNetLBP-RFEMP-RFMF-RF
    Alfalfa81.82100.0087.50100.0080.49100.0095.2497.8391.84
    Corn-notil78.9173.5873.3890.2495.1097.7882.3494.7695.49
    Corn-mintill80.6975.9375.3090.8599.4698.6988.0095.1794.72
    Corn63.1459.6079.3187.9893.9096.2774.0583.8793.81
    Grass-pasture92.8388.7091.3993.9598.1699.3197.1794.0096.21
    Grass-trees85.2482.9894.5993.9899.2499.4488.1897.9095.45
    Grass-pasture-mowed83.87100.0095.00100.00100.0092.2290.00100.0089.66
    Hay-windrowed92.5986.3493.2598.7399.5399.3294.43100.0097.95
    Oats100.00100.00100.0090.9161.1184.65100.00100.00100.00
    Soybean-notill80.0572.2582.6591.1298.1797.5692.1692.9495.96
    Soybean-mintill77.9773.3769.9794.8099.0599.1386.4594.6896.16
    Soybean-clean77.2666.6085.7892.5890.2698.1087.7489.6492.95
    Wheat90.1390.9194.3495.7195.1499.20100.00100.0098.51
    Woods93.2593.0693.3196.4899.4799.2999.3799.2199.61
    Buildings-Grass-Trees-Drives73.8258.4371.7096.2195.9798.0097.4994.3398.21
    Stone-Steel-Towers98.7798.75100.0078.3890.4896.3092.8697.8998.78
    OA82.3477.6280.1193.4397.4498.5789.6695.1596.26
    AA84.3982.5386.7293.2493.4797.2091.5995.7695.96
    Kappa79.7574.2677.0192.5097.0898.3788.1494.4695.73
    Table 2. Classification results on Indian Pines dataset
    ClassSpectral algorithmOne-stage spatial-spectral algorithmTwo-stage spatial-spectral algorithm
    SVMRFCNN1DCNN2DHybridSNA2S2K-ResNetLBP-RFEMP-RFMF-RF
    Asphalt93.6092.0395.1598.75100.0099.7697.1299.4098.68
    Meadows96.1790.2298.1799.33100.0099.9598.6599.8299.30
    Gravel88.3886.5089.8297.9098.6899.4296.6999.8698.76
    Trees96.2596.2195.1096.1999.4599.8897.1099.9099.14
    Painted metal sheets99.0498.2399.6399.56100.0099.9799.48100.0099.85
    Bare Soil94.6592.9391.9499.26100.0099.9698.2699.9499.80
    Bitumen92.7386.1192.0592.81100.00100.0099.1399.7099.62
    Self-Blocking Bricks86.0082.0885.3397.4899.7099.0093.8699.0899.17
    Shadows100.00100.0099.3799.5594.60100.0099.7999.6899.79
    OA94.4190.5695.0798.5899.7299.8197.8199.7199.25
    AA94.0991.5994.0697.8799.1199.7797.7999.7199.35
    Kappa92.5687.2693.4898.1299.6399.7597.1099.6299.01
    Table 3. Classification results on Pavia University dataset
    DatasetSpectral algorithmOne-stage spatial-spectral algorithmTwo-stage spatial-spectral algorithm
    SVMRFCNN1DCNN2DHybridSN

    A2S2K-

    ResNet

    LBP-RFEMP-RFMF-RF
    Indian Pines3.410.541.206.1172.3045.684.381.481.07
    Pavia University39.234.157.4359.56277.31117.4279.7012.6916.69
    Table 4. Classification times of different algorithms on two datasets
    ClassRFL1+RFST+RFST+CORAL+RFMF-RF(17)ST+CORAL+MF-RF(52)
    Dense Urban Fabric5.7829.174.393.708.2115.49
    Mineral Extraction Sites0.0017.0716.2434.092.5033.33
    Non-Irrigated Arable Land25.0083.1445.7192.1866.6776.61
    Fruit Trees0.000.001.523.050.001.96
    Olive Groves2.2244.440.0081.400.0062.63
    Coniferous Forest100.0087.5064.6039.4985.7128.15
    Dense Sclerophyllous Vegetation67.5467.8868.4571.6866.5969.38
    Sparce Sclerophyllous Vegetation44.3337.4651.4349.7045.6551.60
    Sparcely Vegetated Areas9.3811.664.9917.289.2917.92
    Rocks and Sand9.4528.0056.9157.328.9358.40
    Water62.2895.15100.00100.0067.64100.00
    Coastal Water3.01100.00100.0099.342.1596.16
    OA46.6651.9955.4558.5948.5760.03
    AA27.4250.1242.8554.1030.2850.97
    Kappa33.1341.2745.9549.9235.5250.67
    Table 5. Classification results on HyRANK dataset
    DatasetPSNR /dBRFCNN1DMF-RF(minimum)MF-RF(maximum)
    Indian Pines77.6280.1193.7696.26
    36.3877.1080.0793.2795.07
    26.3874.1476.1993.0494.67
    Pavia University90.5695.0799.0699.25
    35.0789.9493.6198.8099.28
    25.0785.7987.7797.9499.31
    Table 6. Classification results of RF, CNN1D, and MF-RFs based on different feature values
    DatasetMF-SVMMF-FCMF-RF
    Indian PinesOA94.8979.6196.26
    AA95.6076.7295.96
    Kappa94.1776.6295.73
    Pavia UniversityOA99.4790.4699.25
    AA99.4989.1399.35
    Kappa99.2987.3399.01
    Table 7. Comparison of MF and different classifiers combinations
    DatasetCNN1D-RFCNN2D-RFMF-RF
    Indian PinesOA80.8892.5396.26
    AA87.7893.6595.96
    Kappa77.9391.4495.73

    Pavia

    University

    OA95.3797.9399.25
    AA95.1997.7999.35
    Kappa93.8397.2599.01
    Table 8. Comparison of different CNN feature extraction methods and RF combinations
    Operation typeData precision /bitEnergy cost /pJ
    Integer comparison80.008
    Floating-point addition320.9
    Floating-point multiplication323.7
    Floating-point exponentiation3238.975
    Table 9. Energy consumption of different operation types
    Classification algorithmIndian PinesPavia University
    SVM2.8×1072.4×107
    RF1.0×1021.1×102
    CNN1D7.2×1053.1×105
    CNN2D1.8×1081.3×108
    HybridSN1.1×1091.1×109
    A2S2K-ResNet7.7×10103.8×1010
    LBP-RF1.1×1021.3×102
    EMP-RF5.4×1071.8×106
    MF-RF2.7×1021.0×103
    Table 10. Energy consumption of each algorithm in classification process
    Shuai Yuan, Yanan Sun, Weifeng He, Shikui Tu. Hyperspectral On-Board Classification Algorithm Based on Multiscale Feature Extraction[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1010004
    Download Citation