• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 3, 35002 (2022)
Hongbo Wang1, Chongyang Tang1, Bo Sun1, Jiangchao Liu1..., Yan Xia1, Wenqing Li1, Changzhong Jiang1, Dong He1,* and Xiangheng Xiao1,2|Show fewer author(s)
Author Affiliations
  • 1Department of Physics, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072, People’s Republic of China
  • 2Hubei Yangtze Memory Laboratories, Wuhan 430205, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac7a6e Cite this Article
    Hongbo Wang, Chongyang Tang, Bo Sun, Jiangchao Liu, Yan Xia, Wenqing Li, Changzhong Jiang, Dong He, Xiangheng Xiao. In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 35002 Copy Citation Text show less
    References

    [1] Chu S, Cui Y and Liu N 2017 The path towards sustainable energy Nat. Mater. 16 16–22

    [2] Zhang A, Liang Y X, Li H P, Zhao X Y, Chen Y L, Zhang B Y, Zhu W G and Zeng J 2019 Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction Nano Lett. 19 6547–53

    [3] Bushuyev O S, De Luna P, Dinh C T, Tao L, Saur G, Van De Lagemaat J, Kelley S O and Sargent E H 2018 What should we make with CO2 and how can we make it? Joule 2 825–32

    [4] Birdja Y Y, Pérez-Gallent E, Figueiredo M C, Gottle A J, Calle-Vallejo F and Koper M T M 2019 Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels Nat. Energy 4 732–45

    [5] Ross M B, De Luna P, Li Y F, Dinh C T, Kim D, Yang P D and Sargent E H 2019 Designing materials for electrochemical carbon dioxide recycling Nat. Catal. 2 648–58

    [6] Yang F et al 2020 Bismuthene for highly efficient carbon dioxide electroreduction reaction Nat. Commun. 11 1088

    [7] Wang W H, Himeda Y, Muckerman J T, Manbeck G F and Fujita E 2015 CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction Chem. Rev. 115 12936–73

    [8] Yang H B et al 2018 Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction Nat. Energy 3 140–7

    [9] Lei F C, Liu W, Sun Y F, Xu J Q, Liu K T, Liang L, Yao T, Pan B C, Wei S Q and Xie Y 2016 Metallic Tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction Nat. Commun. 7 12697

    [10] Chen Z P, Mou K W, Wang X H and Liu L C 2018 Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region Angew. Chem., Int. Ed. 57 12790–4

    [11] Gong Q F et al 2019 Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction Nat. Commun. 10 2807

    [12] Liu S B, Lu X F, Xiao J, Wang X and Lou X W 2019 Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH Angew. Chem., Int. Ed. 58 13828–33

    [13] Zhang W J et al 2018 Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure Nano Energy 53 808–16

    [14] Zhang S, Kang P and Meyer T J 2014 Nanostructured Tin catalysts for selective electrochemical reduction of carbon dioxide to formate J. Am. Chem. Soc. 136 1734–7

    [15] Lei Q et al 2020 Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction J. Am. Chem. Soc. 142 4213–22

    [16] Wu Y S, Jiang Z, Lu X, Liang Y Y and Wang H L 2019 Domino electroreduction of CO2 to methanol on a molecular catalyst Nature 575 639–42

    [17] Zhang A et al 2020 In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate Nano Lett. 20 8229–35

    [18] Han N, Wang Y, Yang H, Deng J, Wu J H, Li Y F and Li Y G 2018 Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate Nat. Commun. 9 1320

    [19] He S D et al 2018 The p-orbital delocalization of main-group metals to boost CO2 electroreduction Angew. Chem., Int. Ed. 57 16114–9

    [20] Pang R C, Tian P F, Jiang H L, Zhu M H, Su X Z, Wang Y, Yang X L, Zhu Y H, Song L and Li C Z 2021 Tracking structural evolution: operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction Natl Sci. Rev. 8 nwaa187

    [21] Chen Y H and Kanan M W 2012 Tin oxide dependence of the CO2 reduction efficiency on Tin electrodes and enhanced activity for Tin/Tin oxide thin-film catalysts J. Am. Chem. Soc. 134 1986–9

    [22] De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todorovi′c P, Regier T, Kelley S O, Yang P D and Sargent E H 2018 Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction Nat. Catal. 1 103–10

    [23] Detweiler Z M, White J L, Bernasek S L and Bocarsly A B 2014 Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte Langmuir 30 7593–600

    [24] Jiang H L, Lin Y X, Chen B X, Zhang Y K, Liu H J, Duan X Z, Chen D and Song L 2018 Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis Mater. Today 21 602–10

    [25] Jiang H L et al 2019 Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction Adv. Mater. 31 1805127

    [26] Zhu Y P, Wang J L, Chu H, Chu Y C and Chen H M 2020 In situ/operando studies for designing next-generation electrocatalysts ACS Energy Lett. 5 1281–91

    [27] Jiang H L, He Q, Zhang Y K and Song L 2018 Structural self-reconstruction of catalysts in electrocatalysis Acc. Chem. Res. 51 2968–77

    [28] Ye K, Zhou Z W, Shao J Q, Lin L, Gao D F, Ta N, Si R, Wang G X and Bao X H 2020 In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction Angew. Chem., Int. Ed. 59 4814–21

    [29] Steele J A and Lewis R A 2014 In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands Opt. Mater. Express 4 2133–42

    [30] Hardcastle F D and Wachs I E 1992 The molecular structure of bismuth oxide by Raman spectroscopy J. Solid State Chem. 97 319–31

    [31] Wang Y T, Li Y H, Liu J Z, Dong C X, Xiao C Q, Cheng L, Jiang H L, Jiang H and Li C Z 2021 BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel Angew. Chem., Int. Ed. 60 7681–5

    [32] Mitch M G, Chase S J, Fortner J, Yu R Q and Lannin J S 1991 Phase transition in ultrathin Bi films Phys. Rev. Lett. 67 875–8

    [33] Wu D, Huo G, Chen W Y, Fu X Z and Luo J L 2020 Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets Appl. Catal. B 271 118957

    [34] Li L D, Yan J Q, Wang T, Zhao Z J, Zhang J, Gong J L and Guan N J 2015 Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production Nat. Commun. 6 5881

    [35] Song X Y, He D, Li W Q, Ke Z J, Liu J C, Tang C Y, Cheng L, Jiang C Z, Wang Z Y and Xiao X H 2019 Anionic dopant delocalization through p-band modulation to endow metal oxides with enhanced visible-light photoactivity Angew. Chem., Int. Ed. 58 16660–7

    [36] Yang X X et al 2020 Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction J. Mater. Chem. A 8 2472–80

    [37] Rosen J, Hutchings G S, Lu Q, Rivera S, Zhou Y, Vlachos D G and Jiao F 2015 Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces ACS Catal. 5 4293–9

    [38] Zhu M et al 2019 Direct atomic insight into the role of dopants in phase-change materials Nat. Commun. 10 3525

    [39] Zhang L, Zhao Z J and Gong J L 2017 Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms Angew. Chem., Int. Ed. 56 11326–53

    [40] Chen Y H, Li C W and Kanan M W 2012 Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles J. Am. Chem. Soc. 134 19969–72

    [41] Jiang B, Zhang X-G, Jiang K, Wu D-Y and Cai W-B 2018 Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces J. Am. Chem. Soc. 140 2880–9

    [42] He D, Song X Y, Li W Q, Tang C Y, Liu J C, Ke Z J, Jiang C Z and Xiao X H 2020 Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance Angew. Chem., Int. Ed. 59 6929–35

    Hongbo Wang, Chongyang Tang, Bo Sun, Jiangchao Liu, Yan Xia, Wenqing Li, Changzhong Jiang, Dong He, Xiangheng Xiao. In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 35002
    Download Citation