[1] Chu S, Cui Y and Liu N 2017 The path towards sustainable energy Nat. Mater. 16 16–22
[2] Zhang A, Liang Y X, Li H P, Zhao X Y, Chen Y L, Zhang B Y, Zhu W G and Zeng J 2019 Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction Nano Lett. 19 6547–53
[3] Bushuyev O S, De Luna P, Dinh C T, Tao L, Saur G, Van De Lagemaat J, Kelley S O and Sargent E H 2018 What should we make with CO2 and how can we make it? Joule 2 825–32
[4] Birdja Y Y, Pérez-Gallent E, Figueiredo M C, Gottle A J, Calle-Vallejo F and Koper M T M 2019 Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels Nat. Energy 4 732–45
[5] Ross M B, De Luna P, Li Y F, Dinh C T, Kim D, Yang P D and Sargent E H 2019 Designing materials for electrochemical carbon dioxide recycling Nat. Catal. 2 648–58
[6] Yang F et al 2020 Bismuthene for highly efficient carbon dioxide electroreduction reaction Nat. Commun. 11 1088
[7] Wang W H, Himeda Y, Muckerman J T, Manbeck G F and Fujita E 2015 CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction Chem. Rev. 115 12936–73
[8] Yang H B et al 2018 Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction Nat. Energy 3 140–7
[9] Lei F C, Liu W, Sun Y F, Xu J Q, Liu K T, Liang L, Yao T, Pan B C, Wei S Q and Xie Y 2016 Metallic Tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction Nat. Commun. 7 12697
[10] Chen Z P, Mou K W, Wang X H and Liu L C 2018 Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region Angew. Chem., Int. Ed. 57 12790–4
[11] Gong Q F et al 2019 Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction Nat. Commun. 10 2807
[12] Liu S B, Lu X F, Xiao J, Wang X and Lou X W 2019 Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH Angew. Chem., Int. Ed. 58 13828–33
[13] Zhang W J et al 2018 Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure Nano Energy 53 808–16
[14] Zhang S, Kang P and Meyer T J 2014 Nanostructured Tin catalysts for selective electrochemical reduction of carbon dioxide to formate J. Am. Chem. Soc. 136 1734–7
[15] Lei Q et al 2020 Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction J. Am. Chem. Soc. 142 4213–22
[16] Wu Y S, Jiang Z, Lu X, Liang Y Y and Wang H L 2019 Domino electroreduction of CO2 to methanol on a molecular catalyst Nature 575 639–42
[17] Zhang A et al 2020 In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate Nano Lett. 20 8229–35
[18] Han N, Wang Y, Yang H, Deng J, Wu J H, Li Y F and Li Y G 2018 Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate Nat. Commun. 9 1320
[19] He S D et al 2018 The p-orbital delocalization of main-group metals to boost CO2 electroreduction Angew. Chem., Int. Ed. 57 16114–9
[20] Pang R C, Tian P F, Jiang H L, Zhu M H, Su X Z, Wang Y, Yang X L, Zhu Y H, Song L and Li C Z 2021 Tracking structural evolution: operando regenerative CeOx/Bi interface structure for high-performance CO2 electroreduction Natl Sci. Rev. 8 nwaa187
[21] Chen Y H and Kanan M W 2012 Tin oxide dependence of the CO2 reduction efficiency on Tin electrodes and enhanced activity for Tin/Tin oxide thin-film catalysts J. Am. Chem. Soc. 134 1986–9
[22] De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todorovi′c P, Regier T, Kelley S O, Yang P D and Sargent E H 2018 Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction Nat. Catal. 1 103–10
[23] Detweiler Z M, White J L, Bernasek S L and Bocarsly A B 2014 Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte Langmuir 30 7593–600
[24] Jiang H L, Lin Y X, Chen B X, Zhang Y K, Liu H J, Duan X Z, Chen D and Song L 2018 Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis Mater. Today 21 602–10
[25] Jiang H L et al 2019 Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction Adv. Mater. 31 1805127
[26] Zhu Y P, Wang J L, Chu H, Chu Y C and Chen H M 2020 In situ/operando studies for designing next-generation electrocatalysts ACS Energy Lett. 5 1281–91
[27] Jiang H L, He Q, Zhang Y K and Song L 2018 Structural self-reconstruction of catalysts in electrocatalysis Acc. Chem. Res. 51 2968–77
[28] Ye K, Zhou Z W, Shao J Q, Lin L, Gao D F, Ta N, Si R, Wang G X and Bao X H 2020 In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction Angew. Chem., Int. Ed. 59 4814–21
[29] Steele J A and Lewis R A 2014 In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands Opt. Mater. Express 4 2133–42
[30] Hardcastle F D and Wachs I E 1992 The molecular structure of bismuth oxide by Raman spectroscopy J. Solid State Chem. 97 319–31
[31] Wang Y T, Li Y H, Liu J Z, Dong C X, Xiao C Q, Cheng L, Jiang H L, Jiang H and Li C Z 2021 BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel Angew. Chem., Int. Ed. 60 7681–5
[32] Mitch M G, Chase S J, Fortner J, Yu R Q and Lannin J S 1991 Phase transition in ultrathin Bi films Phys. Rev. Lett. 67 875–8
[33] Wu D, Huo G, Chen W Y, Fu X Z and Luo J L 2020 Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets Appl. Catal. B 271 118957
[34] Li L D, Yan J Q, Wang T, Zhao Z J, Zhang J, Gong J L and Guan N J 2015 Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production Nat. Commun. 6 5881
[35] Song X Y, He D, Li W Q, Ke Z J, Liu J C, Tang C Y, Cheng L, Jiang C Z, Wang Z Y and Xiao X H 2019 Anionic dopant delocalization through p-band modulation to endow metal oxides with enhanced visible-light photoactivity Angew. Chem., Int. Ed. 58 16660–7
[36] Yang X X et al 2020 Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction J. Mater. Chem. A 8 2472–80
[37] Rosen J, Hutchings G S, Lu Q, Rivera S, Zhou Y, Vlachos D G and Jiao F 2015 Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces ACS Catal. 5 4293–9
[38] Zhu M et al 2019 Direct atomic insight into the role of dopants in phase-change materials Nat. Commun. 10 3525
[39] Zhang L, Zhao Z J and Gong J L 2017 Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms Angew. Chem., Int. Ed. 56 11326–53
[40] Chen Y H, Li C W and Kanan M W 2012 Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles J. Am. Chem. Soc. 134 19969–72
[41] Jiang B, Zhang X-G, Jiang K, Wu D-Y and Cai W-B 2018 Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces J. Am. Chem. Soc. 140 2880–9
[42] He D, Song X Y, Li W Q, Tang C Y, Liu J C, Ke Z J, Jiang C Z and Xiao X H 2020 Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance Angew. Chem., Int. Ed. 59 6929–35