• Journal of Applied Optics
  • Vol. 44, Issue 1, 6 (2023)
Ligang TAN, Mingwei LUO*, and Jie LI
Author Affiliations
  • Technological Innovation Center, Sichuan Jiuzhou Electric Group Co.,Ltd., Mianyang 621000, China
  • show less
    DOI: 10.5768/JAO202344.0101002 Cite this Article
    Ligang TAN, Mingwei LUO, Jie LI. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6 Copy Citation Text show less
    Schematic diagram of four layers basic absorbing unit of metal/graphene/dielectric/metal
    Fig. 1. Schematic diagram of four layers basic absorbing unit of metal/graphene/dielectric/metal
    Schematic diagram of equivalent resonance circuit
    Fig. 2. Schematic diagram of equivalent resonance circuit
    Flow chart of multi-layer structure optimization by genetic algorithm
    Fig. 3. Flow chart of multi-layer structure optimization by genetic algorithm
    Schematic diagram of dual scale and four separation layers structure
    Fig. 4. Schematic diagram of dual scale and four separation layers structure
    Absorption efficiency simulation of single scale and four separation layers structure
    Fig. 5. Absorption efficiency simulation of single scale and four separation layers structure
    Absorption efficiency simulation of dual scale and metal/dielectric/metal four separation layers structure
    Fig. 6. Absorption efficiency simulation of dual scale and metal/dielectric/metal four separation layers structure
    Absorption efficiency simulation of dual scale and metal/graphene/dielectric/metal four separation layers structure
    Fig. 7. Absorption efficiency simulation of dual scale and metal/graphene/dielectric/metal four separation layers structure
    Total absorption efficiency of structure
    Fig. 8. Total absorption efficiency of structure
    Absorption efficiency simulation of four separation layers structure in scale 1 at different incident angles
    Fig. 9. Absorption efficiency simulation of four separation layers structure in scale 1 at different incident angles
    Absorption efficiency simulation of four separation layers structure in scale 2 at different incident angles
    Fig. 10. Absorption efficiency simulation of four separation layers structure in scale 2 at different incident angles
    Absorption efficiency simulation of dual scale and four separation layers structure at different incident angles
    Fig. 11. Absorption efficiency simulation of dual scale and four separation layers structure at different incident angles
    Absorption efficiency simulation of scale 1 and scale 2 four separation layers structure at +10% machining errors
    Fig. 12. Absorption efficiency simulation of scale 1 and scale 2 four separation layers structure at +10% machining errors
    Absorption efficiency simulation of dual scale four separation layers structure at +10% machining errors
    Fig. 13. Absorption efficiency simulation of dual scale four separation layers structure at +10% machining errors
    Absorption efficiency simulation of scale 1 and scale 2 four separation layers structure at −10% machining errors
    Fig. 14. Absorption efficiency simulation of scale 1 and scale 2 four separation layers structure at −10% machining errors
    Absorption efficiency simulation of dual scale four separation layers structure at −10% machining errors
    Fig. 15. Absorption efficiency simulation of dual scale four separation layers structure at −10% machining errors
    名称表面金属结构尺度/µm介质层厚度/µm基本层结构表面金属/石墨烯厚度/nm
    尺度2第1层2421M/G/I15/1
    尺度2第2层1553M/G/I15/1
    尺度2第3层6.447M/G/I15/1
    尺度2第4层8.825M/G/I15/1
    尺度1第1层449107M/G/I15/1
    尺度1第2层246141M/G/I15/1
    尺度1第3层221140M/G/I15/1
    尺度1第4层170128M/G/I/M15/1/2 µm
    Table 1. Parameters of each layer of dual scale and four separation layers structure
    入射角度/(°)尺度1吸收率优于80%频率范围/THz尺度2吸收率优于80%频率范围/THz双尺度吸收率优于80%频率范围/THz
    0[0.195~0.936],[1.297~2.0][0.594~2.0][0.138~2.0]
    10[0.195~0.936],[1.316~2.0][0.594~2.0][0.138~2.0]
    20[0.195~0.993],[1.373~2.0][0.613~2.0][0.138~2.0]
    30[0.214~1.069],[1.487~2.0][0.651~2.0][0.157~2.0]
    40[0.233~1.202],[1.677~2.0][0.727~2.0][0.176~2.0]
    50[0.290~1.430],2.0(频点)[0.898~2.0][0.233~2.0]
    60[0.404~1.278],[1.506~1.791][1.278~2.0][0.309~2.0]
    Table 2. Absorption efficiency of single scale and dual scale four separation layers structure at different incident angles
    加工误差/%尺度1吸收率优于80%频率范围/THz尺度2吸收率优于80%频率范围/THz双尺度吸收率优于80%频率范围/THz
    0[0.195~0.917],[1.297~2.0][0.594~2.0][0.138~2.0]
    +10[0.176~0.741],[1.164~1.848][0.518~1.905][0.119~2.0]
    −10[0.176~0.841],[1.164~1.848][0.727~2.0][0.138~2.0]
    Table 3. Absorption efficiency of single scale and dual scale four separation layers structure at different machining errors
    Ligang TAN, Mingwei LUO, Jie LI. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6
    Download Citation