• Advanced Photonics
  • Vol. 6, Issue 5, 056007 (2024)
Wenkai Zhang1,†, Bo Wu1, Wentao Gu1, Junwei Cheng1..., Hailong Zhou1,*, Dongmei Huang2,3, Ping-kong Alexander Wai4, Liao Chen1, Wenchan Dong1, Jianji Dong1,* and Xinliang Zhang1|Show fewer author(s)
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Wuhan, China
  • 2The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
  • 3The Hong Kong Polytechnic University, Photonics Research Institute, Department of Electrical and Electronic Engineering, Hong Kong, China
  • 4Hong Kong Baptist University, Department of Physics, Hong Kong, China
  • show less
    DOI: 10.1117/1.AP.6.5.056007 Cite this Article Set citation alerts
    Wenkai Zhang, Bo Wu, Wentao Gu, Junwei Cheng, Hailong Zhou, Dongmei Huang, Ping-kong Alexander Wai, Liao Chen, Wenchan Dong, Jianji Dong, Xinliang Zhang, "Large-scale optical programmable logic array for two-dimensional cellular automaton," Adv. Photon. 6, 056007 (2024) Copy Citation Text show less
    References

    [1] H. J. Caulfield, S. Dolev. Why future supercomputing requires optics. Nat. Photonics, 4, 261-263(2010).

    [2] J. Touch, A.-H. Badawy, V. J. Sorger. Optical computing. Nanophotonics, 6, 503-505(2017).

    [3] C. Li et al. The challenges of modern computing and new opportunities for optics. PhotoniX, 2, 20(2021).

    [4] R. A. Athale, S. H. Lee. Development of an optical parallel logic device and a half-adder circuit for digital optical processing. Opt. Eng., 18, 513-517(1979).

    [5] M. N. Islam. Ultrafast all-optical logic gates based on soliton trapping in fibers. Opt. Lett., 14, 1257-1259(1989).

    [6] N. Patel, K. Hall, K. Rauschenbach. 40-Gbit/s cascadable all-optical logic with an ultrafast nonlinear interferometer. Opt. Lett., 21, 1466-1468(1996).

    [7] Q. Xu, M. Lipson. All-optical logic based on silicon micro-ring resonators. Opt. Express, 15, 924-929(2007).

    [8] Y. Fu et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett., 12, 5784-5790(2012).

    [9] C. Qian et al. Performing optical logic operations by a diffractive neural network. Light: Sci. Appl., 9, 59(2020).

    [10] Z. Ying et al. Electronic-photonic arithmetic logic unit for high-speed computing. Nat. Commun., 11, 2154(2020).

    [11] Y. Zhang et al. Chirality logic gates. Sci. Adv., 8, eabq8246(2022).

    [12] T. He et al. On-chip optoelectronic logic gates operating in the telecom band. Nat. Photonics, 18(2023).

    [13] Q. Chen et al. 1 Gbps directed optical decoder based on two cascaded microring resonators. Opt. Lett., 39, 4255-4258(2014).

    [14] T. Daghooghi, M. Soroosh, K. Ansari-Asl. A novel proposal for all-optical decoder based on photonic crystals. Photonic Network. Commun., 35, 335-341(2018).

    [15] H. Alipour-Banaei et al. A 2*4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt., 62, 430-434(2015).

    [16] Z. Ying et al. Silicon microdisk-based full adders for optical computing. Opt. Lett., 43, 983-986(2018).

    [17] J. Dong et al. Single SOA based all-optical adder assisted by optical bandpass filter: theoretical analysis and performance optimization. Opt. Commun., 270, 238-246(2007).

    [18] F. Parandin, M. Reza Malmir. Reconfigurable all optical half adder and optical XOR and AND logic gates based on 2D photonic crystals. Opt. Quantum Electron., 52, 56(2020).

    [19] C. Feng et al. Toward high‐speed and energy‐efficient computing: a WDM‐based scalable on‐chip silicon integrated optical comparator. Laser Photonics Rev., 15, 2000275(2021).

    [20] H. Jile. Realization of an all-optical comparator using beam interference inside photonic crystal waveguides. Appl. Opt., 59, 3714-3719(2020).

    [21] Y. Tian et al. Experimental realization of an optical digital comparator using silicon microring resonators. Nanophotonics, 7, 669-675(2018).

    [22] W. Dong et al. All-optical 2×2-bit multiplier at 40 Gb/s based on canonical logic units-based programmable logic array (CLUs-PLA). J. Lightwave Technol., 38, 5586-5594(2020).

    [23] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55, 601-644(1983).

    [24] S. Wolfram. Cellular automata as models of complexity. Nature, 311, 419-424(1984).

    [25] R. Barlovic et al. Metastable states in cellular automata for traffic flow. Eur. Phys. J. B-Condens. Matter Comp. Syst., 5, 793-800(1998).

    [26] D. E. Wolf. Cellular automata for traffic simulations. Phys. A: Stat.. Mech. Appl., 263, 438-451(1999).

    [27] I. Karafyllidis, A. Thanailakis. A model for predicting forest fire spreading using cellular automata. Ecol. Model., 99, 87-97(1997).

    [28] B. Chopard, M. Droz. Cellular automata model for the diffusion equation. J. Stat. Phys., 64, 859-892(1991).

    [29] L. Kier, C. Cheng, P. Seybold. Cellular automata models of chemical systems. SAR QSAR Environ. Res., 11, 79-102(2000).

    [30] M. Gardner. Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am., 223, 120-123(1970).

    [31] N. M. Gotts. Ramifying feedback networks, cross-scale interactions, and emergent quasi individuals in Conway’s Game of Life. Artif. Life, 15, 351-375(2009).

    [32] P. Bak, K. Chen, M. Creutz. Self-organized criticality in the Game of Life. Nature, 342, 780-782(1989).

    [33] P. Rendell. Collision-Based Computing, 513-539(2002).

    [34] P. Rendell. A Universal Turing Machine in Conway’s Game of Life, -772(2011).

    [35] P. Rendell. Turing Machine Universality of the Game of Life(2016).

    [36] G. H. Li et al. Photonic elementary cellular automata for simulation of complex phenomena. Light: Sci. Appl., 12, 132(2023).

    [37] W. Dong et al. Canonical logic units using bidirectional four-wave mixing in highly nonlinear fiber. Photonics Res., 3, 164-167(2015).

    [38] L. Lei et al. Expanded all-optical programmable logic array based on multi-input/output canonical logic units. Opt. Express, 22, 9959-9970(2014).

    [39] W. Dong et al. Integrated all-optical programmable logic array based on semiconductor optical amplifiers. Opt. Lett., 43, 2150-2153(2018).

    [40] W. Dong et al. Simultaneous full set of three-input canonical logic units in a single nonlinear device for an all-optical programmable logic array. Opt. Express, 30, 41922-41932(2022).

    [41] C. Qiu et al. Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits. Opt. Lett., 37, 3942-3944(2012).

    [42] Y. Tian et al. Reconfigurable electro-optic logic circuits using microring resonator-based optical switch array. IEEE Photonics J., 8(2016).

    [43] Y. Tian et al. Experimental demonstration of a reconfigurable electro-optic directed logic circuit using cascaded carrier-injection micro-ring resonators. Sci. Rep., 7, 6410(2017).

    [44] W. Zhang et al. Performing photonic nonlinear computations by linear operations in a high-dimensional space. Nanophotonics, 12, 3189-3197(2023).

    [45] J.-P. Rennard. Implementation of Logical Functions in the Game of Life. Collision-Based Computing, 491-512(2002).

    [46] N. Johnston, D. Greene. Conway’s Game of Life: Mathematics and Construction(2022).

    [47] B. B. Mandelbrot, B. B. Mandelbrot. The Fractal Geometry of Nature, 1(1982).

    [48] C. Burstedde et al. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A: Stat. Mech. Appl., 295, 507-525(2001).

    [49] S. i. Tadaki, M. Kikuchi. Self-organization in a two-dimensional cellular automaton model of traffic flow. J. Phys. Soc. Jpn., 64, 4504-4508(1995).

    [50] M. Tomassini, M. Sipper, M. Perrenoud. On the generation of high-quality random numbers by two-dimensional cellular automata. IEEE Trans. Comput., 49, 1146-1151(2000).

    [51] D. R. Nayak, P. K. Patra, A. Mahapatra. A survey on two dimensional cellular automata and its application in image processing(2014).

    [52] I. W. Damaj. Programmable Logic Arrays(2007).

    [53] P. Yang et al. High-bandwidth lumped Mach-Zehnder modulators based on thin-film lithium niobate. Photonics, 11, 399(2024).

    [54] A. Rizzo et al. Ultra-broadband interleaver for extreme wavelength scaling in silicon photonic links. IEEE Photonics Technol. Lett., 33, 55-58(2020).

    [55] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [56] K. Nozaki et al. Amplifier-free bias-free receiver based on low-capacitance nanophotodetector. IEEE J. Sel. Top. Quantum Electron., 24, 4900111(2017).

    [57] X. Zhang et al. High-speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers. J. Opt. Commun. Networks, 7, 276-285(2015).

    [58] Z. Liu et al. On-chip optical parity checker using silicon photonic integrated circuits. Nanophotonics, 7, 1939-1948(2018).

    [59] X. Lin, C. Zhao, W. Pan. Towards accurate binary convolutional neural network. Proc. 31st Int. Conf. Neural Inf. Process. Sys., 344-352(2017).

    [60] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [61] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [62] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [63] P. Dong et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt. Express, 18, 25225-25231(2010).

    Wenkai Zhang, Bo Wu, Wentao Gu, Junwei Cheng, Hailong Zhou, Dongmei Huang, Ping-kong Alexander Wai, Liao Chen, Wenchan Dong, Jianji Dong, Xinliang Zhang, "Large-scale optical programmable logic array for two-dimensional cellular automaton," Adv. Photon. 6, 056007 (2024)
    Download Citation