[2] WANG H, PAN J, MENG Y A, et al. Advances of Yb∶CALGO laser crystals[J]. Crystals, 2021, 11(9): 1131.
[3] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.
[4] PATEL C K N, TIEN P K, MCFEE J H. CW high-power CO2-N2-He laser[J]. Applied Physics Letters, 1965, 7(11): 290-292.
[5] BROMBERG J L, FRANKEN P. The laser in America, 1950-1970[J]. Physics Today, 1992, 45(3): 67-68.
[6] SOROKIN P P, LANKARD J R. Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine[J]. IBM Journal of Research and Development, 1966, 10(2): 162-163.
[7] SCHFER F P, SCHMIDT W, VOLZE J. Organic dye solution laser[J]. Applied Physics Letters, 1966, 9(8): 306-309.
[8] SOFFER B H, MCFARLAND B B. Continuously tunable, narrow-band organic dye lasers[J]. Applied Physics Letters, 1967, 10(10): 266-267.
[9] BOULON G. Fifty years of advances in solid-state laser materials[J]. Optical Materials, 2012, 34(3): 499-512.
[10] HATCH S E, PARSONS W F, WEAGLEY R J. Hot-pressed polycrystalline CaF2∶Dy2+ laser[J]. Applied Physics Letters, 1964, 5(8): 153-154.
[11] HECHT J. Short history of laser development[J]. Optical Engineering, 2010, 49(9): 091002.
[12] PRONIN O, BRONS J, GRASSE C, et al. High-power 200 fs Kerr-lens mode-locked Yb∶YAG thin-disk oscillator[J]. Optics Letters, 2011, 36(24): 4746-4748.
[13] MACHINET G, SEVILLANO P, GUICHARD F, et al. High-brightness fiber laser-pumped 68 fs-23 W Kerr-lens mode-locked Yb: CaF2 oscillator[J]. Optics Letters, 2013, 38(20): 4008.
[14] SVILLANO P, GEORGES P, DRUON F, et al. 32-fs Kerr-lens mode-locked Yb∶CaGdAlO4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20): 6001-6004.
[15] TIAN W L, YU C, ZHU J F, et al. Diode-pumped high power sub-100 fs Kerr-lens mode-locked Yb∶CaYAlO4 laser with 1.85 MW peak power[J]. Optics Express,2019,15(27): 21448-21454
[16] WANG Y R, SU X C, XIE Y Y, et al. 17.8 fs broadband kerr-lens mode-locked Yb∶CALGO oscillator[J]. Optics Letters, 2021, 46(8): 1892-1895.
[17] LOIKO P, BECKER P, BOHATY L, et al. Sellmeier equations, group velocity dispersion, and thermo-optic dispersion formulas for CaLnAlO4 (Ln=Y, Gd) laser host crystals[J]. Optics Letters, 2017, 42(12): 2275-2278.
[18] DRUON F, OLIVIER M, BALEMBOIS F, et al. Yb∶CaGdAlO4 laser under high pumping power: high performances and singularities[C]//SPIE LASE. Proc SPIE 8959, Solid State Lasers XXIII: Technology and Devices, San Francisco, California, USA. 2014, 8959: 263-268.
[19] BOUDEILE J, DRUON F, HANNA M, et al. Continuous-wave and femtosecond laser operation of Yb∶CaGdAlO4 under high-power diode pumping[J]. Optics Letters, 2007, 32(14): 1962-1964.
[20] TALIK E, KISIELEWSKI J, ZAJDEL P, et al. XPS spectroscopy, structural, magnetic and dielectric investigations of CaGdAlO4 and Yb∶CaGdAlO4 single crystals[J]. Optical Materials, 2019, 91: 355-362.
[21] GAO Z Y, ZHU J F, WANG J L, et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb∶CaYAlO4 laser[J]. Photonics Research, 2015, 3(6): 335.
[22] PETIT J, GOLDNER P, VIANA B. Laser emission with low quantum defect in Yb∶CaGdAlO4[J]. Optics Letters, 2005, 30(11): 1345-1347.
[25] DI J Q, XU X D, XIA C T, et al. Crystal growth, polarized spectra, and laser performance of Yb∶CaGdAlO4 crystal[J]. Laser Physics, 2016, 26(4): 045803.
[26] JAFFRe S A, RICAUD S, SUGANUMA A, et al. Yb∶CALGO as material for high power ultrafast laser and focus on thermal conductivity variation[C]//SPIE OPTO. Proc SPIE 8621, Optical Components and Materials X, San Francisco, California, USA. 2013, 8621: 395-401.
[27] JAFFRèS A, RICAUD S, SUGANUMA A, et al. Thermal conductivity versus Yb3 concentration in Yb∶CALGO: a material for high power ultrafast laser[C]//2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. May 12-16, 2013, Munich, Germany. IEEE, 2014: 1.
[28] ZHANG N, WANG H Y, YIN Y Q, et al. Cracking mechanism and spectral properties of Er, Yb∶CaGdAlO4 crystals grown by the LHPG method[J]. CrystEngComm, 2020, 22(5): 955-960.
[29] WIERZBICKA E, MALINOWSKA A, WIERZCHOWSKI W, et al. Investigation of structural defects in ytterbium doped calcium gadolinum aluminate crystals by means of the synchrotron and conventional diffraction topography[J]. Thin Solid Films, 2017, 643: 16-23.
[30] HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545.
[31] BEIL K, DEPPE B, KRNKEL C. Yb∶CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range[J]. Optics Letters, 2013, 38(11): 1966-1968.
[32] KRUCZEK M, TALIK E, PAWLAK D, et al. X-ray photoelectron spectroscopy studies of PrAlO3 crystals before and after thermal treatment[J]. Optics express, 22(10), 11884-11891.
[33] PETIT J, GOLDNER P, VIANA B, et al. Quest of athermal solid state laser: case of Yb∶CaGdAlO4[C]//SPIE Proceedings, Solid State Lasers and Amplifiers Ⅱ. Strasbourg, France. SPIE, 2006: 619003.
[34] AKBARI R, LOIKO P, MAJOR A. Thermal lensing in diode-pumped Yb∶CALGO and Yb∶KGW lasers[C]//Solid State Lasers XXIX: Technology and Devices. February 1-6, 2020. San Francisco, USA. SPIE, 2020, 11259: 112591 W.
[35] GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser [C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies. Optica Publishing Group, 2004: CTuCC2.
[36] KULESHOV N V, LAGATSKY A A, PODLIPENSKY A V, et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2[J]. Optics Letters, 1997, 22(17): 1317-1319.
[37] LOIKO P, DRUON F, GEORGES P, et al. Thermo-optic characterization of Yb∶CaGdAlO4 laser crystal[J]. Optical Materials Express, 2014, 4(11): 2241.
[38] SHEN Y J, MENG Y A, FU X, et al. Dual-wavelength vortex beam with high stability in a diode-pumped Yb∶CaGdAlO4 laser[J]. Laser Physics Letters, 2018, 15(5): 055803.
[39] DRUON F, OLIVIER M, JAFFRS A, et al. Magic mode switching in Yb∶CaGdAlO4 laser under high pump power[J]. Optics Letters, 2013, 38(20): 4138-4141.
[40] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.
[41] KELLER U, MILLER D A, BOYD G D, et al. Solid-state low-loss intracavity saturable absorber for Nd∶YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 1992, 17(7): 505-507.
[42] DIDDAMS S, VAHALA K, UDEM T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369: eaay3676.
[43] ZHENG J Q, CONG Z H, LIU Z J, et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 2021, 48(12): 1201008.
[44] JANG Y S, KIM S W. Distance measurements using mode-locked lasers: a review[J]. Nanomanufacturing and Metrology, 2018, 1(3): 131-147.
[45] MAYER A S, PHILLIPS C R, KELLER U. Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal[J]. Nature Communications, 2017, 8: 1673.
[46] VIANA B, PETIT J, GOLDNER P, et al. 47 fs in diode-pumped Yb∶CaGdAlO4[C]//SPIE Photonics Europe. Proc SPIE 6190, Solid State Lasers and Amplifiers Ⅱ, Strasbourg, France. 2006, 6190: 619001.
[47] YANG J F, WANG Z H, SONG J J, et al. Diode-pumped 10 W femtosecond Yb∶CALGO laser with high beam quality[J]. High Power Laser Science and Engineering, 2021, 9: e33.
[48] WANG S, WANG Y B, FENG G Y, et al. Harmonically mode-locked Yb∶CALGO laser pumped by a single-mode 12 W laser diode[J]. Optics Express, 2018, 26(2): 1521.
[51] SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44.
[52] MENG X H, BAN X N, LV C, et al. 95 fs pulses with 1.21 MW peak power from diode-pumped ultrafast Yb∶CaGdAlO4 laser using an additional Kerr medium[J]. Optics Communications, 2021, 498: 127246.
[53] KIM D Y, PARK B J, LEE S Y, et al. High-power 50 fs kerr-lens mode-locked Yb∶CALGO oscillator[J]. Optics & Laser Technology, 2023, 159: 109019.
[54] MANJOORAN S, MAJOR A. Diode-pumped 45 fs Yb∶CALGO laser oscillator with 1.7 MW of peak power[J]. Optics Letters, 2018, 43(10): 2324-2327.
[55] RICAUD S, JAFFRES A, LOISEAU P, et al. Yb∶CaGdAlO4 thin-disk laser[J]. Optics Letters, 2011, 36(21): 4134-4136.
[56] RICAUD S, JAFFRES A, WENTSCH K, et al. Femtosecond Yb∶CaGdAlO4 thin-disk oscillator[J]. Optics Letters, 2012, 37(19): 3984-3986.
[57] MODSCHING N, PARADIS C, LABAYE F, et al. Kerr lens mode-locked Yb∶CALGO thin-disk laser[J]. Optics Letters, 2018, 43(4): 879-882.
[59] MURRAY J E, LOWDERMILK W H. Nd∶YAG regenerative amplifier[J]. Journal of Applied Physics, 1980, 51(7): 3548-3556.
[61] CARACCIOLO E, KEMNITZER M, GUANDALINI A, et al. High pulse energy multiwatt Yb∶CaAlGdO4 and Yb∶CaF2 regenerative amplifiers[J]. Optics Express, 2014, 22(17): 19912.
[62] WANG W Z, PU T, WU H, et al. High-power Yb∶CALGO regenerative amplifier and 30 fs output via multi-plate compression[J]. Optics Express, 2022, 30(12): 22153.
[63] WANG G Y, BAI C, ZHENG L, et al. MHz repetition rate femtosecond Yb∶CaGdAlO4 regenerative amplifier generating 20-W 168-fs pulses[J]. IEEE Photonics Technology Letters, 2023, 35(4): 171-174.