• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811017 (2023)
Daoyuan Wang1, Chengzhe Gao1, Wanxia Huang1, Kun Meng2, and Qiwu Shi1,*
Author Affiliations
  • 1College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan , China
  • 2Qingdao QUNDA Terahertz Technology Co., Ltd., Qingdao 266104, Shandong , China
  • show less
    DOI: 10.3788/LOP231068 Cite this Article Set citation alerts
    Daoyuan Wang, Chengzhe Gao, Wanxia Huang, Kun Meng, Qiwu Shi. Terahertz Wave Reflection Regulation Based on Controllable Impedance of Silicon-Based MXene Layers[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811017 Copy Citation Text show less
    References

    [1] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [2] Seifert T S, Jaiswal S, Barker J et al. Femtosecond formation dynamics of the spin Seebeck effect revealed by terahertz spectroscopy[J]. Nature Communications, 9, 2899(2018).

    [3] Tang P R, Li J, Du L H et al. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure[J]. Optics Express, 26, 30655-30666(2018).

    [4] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).

    [5] Ren A F, Zahid A, Fan D et al. State-of-the-art in terahertz sensing for food and water security-a comprehensive review[J]. Trends in Food Science & Technology, 85, 241-251(2019).

    [6] Wu X J, Ren Z J, Kong D Y et al. Strong field terahertz light source of lithium niobate and its application[J]. Chinese Journal of Lasers, 49, 1914001(2022).

    [7] Zhu H F, Li J, Du L H et al. A phase transition oxide/graphene interface for incident-angle-agile, ultrabroadband, and deep THz modulation[J]. Advanced Materials Interfaces, 7, 2001297(2020).

    [8] Fan X Q, Li Y H, Chen S H et al. Mechanical terahertz modulation by skin-like ultrathin stretchable metasurface[J]. Small, 16, 2002484(2020).

    [9] Yi N N, Zong R, Gong J et al. Single-/ dual-band switchable terahertz absorber based on vanadium dioxide-dirac semi-metal hybrid metamaterial[J]. Chinese Journal of Lasers, 49, 0314002(2022).

    [10] Cui Q, Chen Z, Wang Y. Dynamic manipulation of terahertz wave phase based on vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 49, 0314001(2022).

    [11] Gu J Q, Wang K M, Xu Y et al. Metamaterials-based terahertz photoconductive antennas[J]. Chinese Journal of Lasers, 48, 1914004(2021).

    [12] Huang Z Y, Chen H H, Huang Y et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials, 28, 1704363(2018).

    [13] Shui W C, Li J M, Wang H et al. Ti3C2Tx MXene sponge composite as broadband terahertz absorber[J]. Advanced Optical Materials, 8, 2001120(2020).

    [14] Naguib M, Kurtoglu M, Presser V et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 23, 4248-4253(2011).

    [15] Li Y B, Shao H, Lin Z F et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 19, 894-899(2020).

    [16] Sun R H, Zhang H B, Liu J et al. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Advanced Functional Materials, 27, 1702807(2017).

    [17] Mathis T S, Maleski K, Goad A et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene[J]. ACS Nano, 15, 6420-6429(2021).

    [18] Li G J, Amer N, Hafez H A et al. Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses[J]. Nano Letters, 20, 636-643(2020).

    [19] Choi G, Shahzad F, Bahk Y M et al. Enhanced terahertz shielding of MXenes with nano-metamaterials[J]. Advanced Optical Materials, 6, 1701076(2018).

    [20] Wan H J, Liu N, Tang J et al. Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding[J]. ACS Nano, 15, 13646-13652(2021).

    [21] Feng T D, Huang W X, Zhu H F et al. Optical-transparent self-assembled MXene film with high-efficiency terahertz reflection modulation[J]. ACS Applied Materials & Interfaces, 13, 10574-10582(2021).

    [22] Zhou Y X, E Y W, Zhu L P et al. Terahertz wave reflection impedance matching properties of graphene layers at oblique incidence[J]. Carbon, 96, 1129-1137(2016).

    [23] Zhou Y X, E Y W, Ren Z Y et al. Solution-processable reduced graphene oxide films as broadband terahertz wave impedance matching layers[J]. Journal of Materials Chemistry C, 3, 2548-2556(2015).

    Daoyuan Wang, Chengzhe Gao, Wanxia Huang, Kun Meng, Qiwu Shi. Terahertz Wave Reflection Regulation Based on Controllable Impedance of Silicon-Based MXene Layers[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811017
    Download Citation