• Optics and Precision Engineering
  • Vol. 32, Issue 23, 3504 (2024)
Haizhao JING, Lijie TAO, and Haokui ZHANG*
Author Affiliations
  • Northwestern Polytechnical University, Xi’an710129, China
  • show less
    DOI: 10.37188/OPE.20243223.3504 Cite this Article
    Haizhao JING, Lijie TAO, Haokui ZHANG. Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer[J]. Optics and Precision Engineering, 2024, 32(23): 3504 Copy Citation Text show less
    Workflow of 3D-ConvFormer framework
    Fig. 1. Workflow of 3D-ConvFormer framework
    Operation of 3D-ConvFormer block
    Fig. 2. Operation of 3D-ConvFormer block
    Visualization results of different methods on Indian Pine dataset
    Fig. 3. Visualization results of different methods on Indian Pine dataset
    Visualization results of different methods on Pavia University dataset
    Fig. 4. Visualization results of different methods on Pavia University dataset
    Visualization results of different methods on WHU-Hi-LongKou dataset
    Fig. 5. Visualization results of different methods on WHU-Hi-LongKou dataset
    Scatter plot of overall accuracy predicted by five methods on three datasets
    Fig. 6. Scatter plot of overall accuracy predicted by five methods on three datasets
    ClassTrain numTest num
    Alfalfa4610
    Corn-notill1 428150
    Corn-mintill830150
    Corn23710
    Grass-pasture483150
    Grass-trees730150
    Grass-pasture-mowed2810
    Hay-windrowed478150
    Oats2010
    Soybean-notill972150
    Soybean-mintill2 455150
    Soybean-clean593150
    Wheat20510
    Woods1 265150
    Buildings-Grass-Trees-Drives386150
    Stone-Steel-Towers9310
    Total10 2491 560
    Table 1. Land cover class in Indian Pines dataset
    ClassTrain numTest num
    Asphalt6 631150
    Meadows18 649150
    Gravel2 099150
    Trees3 064150
    Painted metal sheets1 345150
    Bare Soil5 029150
    Bitumen1 330150
    Self-Blocking Bricks3 682150
    Shadows947150
    Total42 7761 350
    Table 2. Land cover class in Pavia University dataset
    ClassTrain numTest num
    Corn34 511150
    Cotton8 374150
    Sesame3 031150
    Broad-leaf soybean63 212150
    Narrow-leaf soybean4 151150
    Rice11 854150
    Water67 056150
    Roads and houses7 124150
    Mixed weed5 229150
    Total204 5421 350
    Table 3. Land cover class in WHU-Hi-LongKou dataset
    Class3D-CNNLWNetSpectralFormerSSFTT3D-ConvFormer
    C197.22100.0097.83100.0091.67
    C297.8198.2891.3995.0795.93
    C398.8299.8596.02100.0099.56
    C493.3982.8247.6892.5191.63
    C5100.00100.0098.3499.70100.00
    C6100.0097.5998.9099.48100.00
    C7100.00100.00100.00100.00100.00
    C8100.00100.00100.00100.00100.00
    C9100.00100.00100.00100.00100.00
    C1097.9399.3994.3499.1599.03
    C1198.5799.0584.9799.2299.13
    C1299.7797.5298.3195.2699.77
    C1385.6482.5671.2285.6489.74
    C14100.0099.9198.81100.0099.28
    C15100.00100.0098.70100.00100.00
    C1686.7592.7787.1078.3195.18
    OA(%)98.3798.2291.9896.5298.41
    AA(%)97.2496.8691.4897.9797.56
    KAPPA(%)98.1197.9490.8997.6598.16
    Table 4. Comparison of classification results of different methods on Indian Pines dataset
    Class3D-CNNLWNetSpectralFormerSSFTT3D-ConvFormer
    C196.6293.1888.8096.7699.15
    C294.3797.7184.1099.3499.70
    C391.7497.6979.6698.9299.69
    C496.1293.4594.8881.6797.25
    C5100.0099.8399.7898.2499.92
    C699.80100.0091.4199.92100.00
    C799.9299.9295.3499.49100.00
    C896.7299.0489.3599.5298.58
    C997.6297.2499.7991.0999.37
    OA(%)95.9497.2087.8896.1199.39
    AA(%)96.9997.5691.4597.5799.30
    KAPPA(%)94.6296.2684.3496.7499.18
    Table 5. Comparison of classification results of different methods on Pavia University dataset
    Class3D-CNNLWNetSpectralFormerSSFTT3D-ConvFormer
    C198.0097.0598.9199.5699.66
    C298.2098.5460.4599.2999.77
    C399.7999.9398.81100.0099.90
    C491.4793.1884.9098.0296.29
    C599.5899.9386.2799.4899.63
    C698.7998.9798.7698.1098.89
    C798.6498.3898.8696.8199.73
    C892.6392.4793.9595.2398.48
    C998.4197.9998.4196.6398.39
    OA(%)96.1296.4292.5398.1298.53
    AA(%)97.2897.3891.0397.6898.97
    KAPPA(%)94.9495.3290.3797.2098.07
    Table 6. Comparison of classification results of different methods on WHU-Hi-LongKou dataset
    Haizhao JING, Lijie TAO, Haokui ZHANG. Specral-spatial classification of hyperspectral imagery with hybrid architecture of 3D-CNN and Transformer[J]. Optics and Precision Engineering, 2024, 32(23): 3504
    Download Citation