[2] Zhang Liang, Zhang Wei, Nie Qiuhua, et al.. Research progress of two-dimensional photonic crystal waveguides [J]. Laser & Optoelectronics Progress, 2013, 50(3): 030008.
[3] Liu Shan, Shen Xiang, Xu Tiefeng, et al.. Dispersion characteristics of Ge20Sb15Se65 chalcogenide rib waveguides [J]. Acta Optica Sinica, 2013, 33(5): 0513001.
[4] Wu Ligang, Li Zupan, Wang Xunsi, et al.. Internal macroscopic defects perspective inaging detection system for infrared chalcogenide glasses[J]. Chinese J Lasers, 2012, 39(1): 0108001.
[5] Cao Fengzhen, Zhang Peiqing, Dai Shixun, et al.. Research progress of high-nonlinearity photonic crystal fiber based on chalcogenide glass[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060003.
[6] J Hu, C R Menyuk, L B Shaw, et al.. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers[J]. Opt Express, 2010, 18(7): 6722-6739.
[7] M R E Lamont, L D Barry, D Y Choi, et al.. Supercontinuum generation in dispersion engineered highly nonlinear ( γ=10/W/m) As2S3 chalcogenide planar waveguide[J]. Opt Express, 2008, 16(19): 14938-14944.
[8] F Luan, M Pelusi, M R Lamont, et al.. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals[J]. Opt Express, 2009, 17(5): 3514-3520.
[9] M Galili, J Xu, Hans C H Mulvad, et al.. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing[J]. Opt Express, 2009, 17(4): 2182-2187.
[10] H C H Mulvad, L K Oxenlwe, M Galili, et al.. 1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing[J]. Electron Lett, 2009, 45(5): 280-281.
[11] A K Varshneya, D J Mauro. Microhardness, indentation toughness, elasticity, plasticity, and brittleness of Ge -Sb-Se chalcogenide glasses[J]. J Non-Cryst Solides, 2007, 353(13-15): 1291-1297.
[12] Sue Xueqiong, Wang Li, Wang Rongping. Research on photostability for infrared thin films of chalcogenide glasses[J]. Acta Optica Sinica, 2013, 33(s1): s116002.
[13] He Yuju, Nie Qiuhua, Wang Xunsi, et al.. Optical properties of Ge-Te-Ag far infrared chalcogenide glasses[J]. J Optoelectronics·Laser, 2012, 23(6): 1109-1113.
[14] H Nasu, K Kubodera, M Kobayashi, et al.. Third-harmonic generation from some chalcogenide glasses[J]. J Am Ceramic Society, 1990, 73(6): 1794-1796.
[15] H Kobayashi, H Kanbara, M Koga, et al.. Third-order nonlinear optical properties of As2S3 chalcogenide glass[J]. J Appl Phys, 1993, 74(6): 3683-3687.
[16] H Kanbara, S Fujiwara, K Tanaka, et al.. Third-order nonlinear optical properties of chalcogenide glasses[J]. Appl Phys Lett, 1997, 70(8): 925-927.
[17] C Quemard, F Smektala, V Couderc, et al.. Chalcogenide glasses with high non linear optical properties for telecommunications[J]. J Phys and Chem Solids, 2001, 62(8): 1435-1440.
[18] Guo Haitao, Hou Chaoqi, Gao Fei, et al.. Third-order nonlinear optical properties of GeS2-Sb2S3-CdS chalcogenide glasses[J]. Opt Express, 2010, 18(22): 23275-23284.
[19] Guo Haitao, Chen Hongyan, Hou Chaoqi, et al.. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses[J]. Mater Res Bulletin, 2011, 46(5): 765-770.
[20] S Rani, D Mohan, N Kishore, et al.. Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 93: 135-139.
[21] R Klein. Chalcogenide glasses as passive thin film structures for integrated optics[J]. J Elec Mat, 1974, 3(1): 79-99.
[22] M L Anne, J Keirsse, V Nazabal, et al.. Chalcogenide glass optical waveguides for infrared biosensing[J]. Sensors, 2009, 9(9): 7398-7411.
[23] Y Ruan, W Li, R Jarvis, et al.. Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching[J]. Opt Express, 2009, 12(21): 5140-5145.
[24] H Mushahid, R Swati. Chalcogenide glass optical waveguides for optical communication[J]. Adv Matet Res, 2013, 679: 41-45.
[25] M D Pelusi, V G Ta′ eed, L Fu, et al.. Applications of highly-nonlinear chalcogenide glass devices tailored for highspeed all-optical signal processing[J]. IEEE J Sel Top Quantum Electron, 2008, 14(3): 529-539.
[26] D Y Choi, S Madden, D Bulla, et al.. Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance[J]. J Appl Phys, 2010, 107(5): 053106.
[27] K Richardson, K Petit, N Carlie, et al.. Progress on the fabrication of on-chip, integrated chalcogenide glass(ChG)-based sensors[J]. J Nonlinear Opt Phys & Mater, 2010, 19(1): 75-99.
[28] H T Lin, L Li, Y Zou, et al.. Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators[J]. Opt Lett, 2013, 38(9): 1470-1472.
[29] Z G Lian, W Pan, D Furniss, et al.. Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films[J]. Opt Lett, 2009, 34(8): 1234-1236.
[30] T Han, S Madden, D Bulla, et al.. Low loss chalcogenide glass waveguides by thermal nano-print lighography[J]. Opt Express, 2010, 18(18): 19286-19291.
[31] O M Efimov, L B Glebov, K A Richardson, et al.. Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses[J]. Opt Mater, 2001, 17(3): 379-386.
[32] R Osellame, G D Valle, N Chiodo, et al.. Lasing in femtosecond laser written optical waveguides[J]. App Phys A, 2008, 93(1): 17-26.
[33] H Huang, L M Yang, L Jian, et al.. Femtosecond fiber laser direct writing of optical waveguide in glasses[C]. SPIE, 2011, 8164: 81640B.
[34] T Sabapathy, A Ayiriveetil, A K Kar, et al.. Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass[J]. Opt Mater Express, 2012, 2(11): 1556-1561.
[35] J S Sanghera, L B Shaw, P Pureza, et al.. Nonlinear properties of chalcogenide glass fibers[J]. Appl Glass Sci, 2006, 1(3): 296-308.
[36] J Fatome, C Fortier, T N Nguyen, et al.. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers [J]. J Lightwave Technol, 2009, 27(11): 1707-1715.
[37] O Fedotova, A Husakou, J Herrmann. Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion[J]. Opt Express, 2006, 14(4): 1512-1517.
[38] N D Psaila, R R Thomson, H T Bookey, et al.. Waveguide fabrication and supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide[C]. CLEO/QELS, 2008. CMDD.
[39] R Pant, C Xiong, S Madden, et al.. Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: a step towards on-chip analog-to-digital conversion[J]. Opt Commum, 2010, 283(10): 2258-2262.
[40] X Gai, D Y Choi, S Madden, et al.. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide[J]. Opt Lett, 2012, 37(18): 3870-3872.
[41] M R E Lamont, V G Ta′ eed, M A F Roelens, et al.. Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 chalcogenide glass rib waveguide[J]. Electron Lett, 2007, 43(17): 945-947.
[42] M D Pelusi, F Luan, S Madden, et al.. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip[J]. IEEE Photon Tech Lett, 2010, 22(1): 3-5.
[43] Y Huang, P P Shum, F Luan, et al.. Raman-assisted wavelength conversion in chalcogenide waveguides[J]. IEEE J Sel Top Quantum Electron, 2012, 18(2): 646-653.