[1] Mochalin V N, Shenderova O, Ho D and Gogotsi Y 2012 The properties and applications of nanodiamonds Nat. Nanotechnol. 7 11–23
[2] Baidakova M and Vul A 2007 New prospects and frontiers of nanodiamond clusters J. Phys. D: Appl. Phys. 40 6300
[3] Hui Y Y, Cheng C L and Chang H C 2010 Nanodiamonds for optical bioimaging J. Phys. D: Appl. Phys. 43 374021
[4] Motlag M, Liu X T, Nurmalasari N P D, Jin S Y, Nian Q, Park C, Jin L R, Huang L B, Liu J and Cheng G J 2020 Molecular-scale nanodiamond with high-density color centers fabricated from graphite by laser shocking Cell Rep. Phys. Sci. 1 100054
[5] Ansari S A, Satar R, Jafri M A, Rasool M, Ahmad W and Zaidi S K 2016 Role of nanodiamonds in drug delivery and stem cell therapy Iran. J. Biotechnol. 14 130–41
[6] Perevedentseva E, Lin Y C, Jani M and Cheng C L 2013 Biomedical applications of nanodiamonds in imaging and therapy Nanomedicine 8 2041–60
[7] Basu S, Kang W P, Davidson J L, Choi B K, Bonds A B and Cliffel D E 2006 Electrochemical sensing using nanodiamond microprobe Diamond Relat. Mater. 15 269–74
[8] Greentree A D 2016 Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing New J. Phys. 18 021002
[9] Batsanov S S, Osavchuk A N, Naumov S P, Gavrilkin S M, Leskov A S, Mendis B G, Beeby A and Batsanov A S 2018 Novel synthesis and properties of hydrogen-free detonation nanodiamond Mater. Chem. Phys. 216 120–9
[10] Dorokhov A O, Dolmatov V Y, Malygin A A, Kozlov A S and Marchukov V A 2020 Development of the detonation nanodiamond synthesis from tetryl based ternary mixtures Russ. J. Appl. Chem. 93 1083–9
[11] Brygoo S, Henry E, Loubeyre P, Eggert J, Koenig M, Loupias B, Benuzzi-Mounaix A and Le Gloahec M R 2007 Laser-shock compression of diamond and evidence of a negative-slope melting curve Nat. Mater. 6 274–7
[12] Kraus D et al 2016 Nanosecond formation of diamond and lonsdaleite by shock compression of graphite Nat. Commun. 7 10970
[13] Yocom C J, Zhang X and Liao Y L 2018 Research and development status of laser peen forming: a review Opt. Laser Technol. 108 32–45
[14] Galitskiy S and Dongare A M 2021 Modeling the damage evolution and recompression behavior during laser shock loading of aluminum microstructures at the mesoscales J. Mater. Sci. 56 4446–69
[15] Zhang X, Mao B, Siddaiah A, Menezes P L and Liao Y L 2020 Direct laser shock surface patterning of an AZ31B magnesium alloy: microstructure evolution and friction performance J. Mater. Process. Technol. 275 116333
[16] Mao B, Liao Y L and Li B 2018 Gradient twinning microstructure generated by laser shock peening in an AZ31B magnesium alloy Appl. Surf. Sci. 457 342–51
[17] Kalentics N, Boillat E, Peyre P, Gorny C, Kenel C, Leinenbach C, Jhabvala J and Logé R E 2017 3D laser shock peening–a new method for the 3D control of residual stresses in selective laser melting Mater. Des. 130 350–6
[18] Klimentov S M, Garnov S V, Konov V I, Kononenko T V, Pivovarov P A, Tsarkova O G, Breitling D and Dausinger F 2007 Effect of low-threshold air breakdown on material ablation by short laser pulses Phys. Wave Phenom. 15 1–11
[19] Nian Q, Wang Y F, Yang Y L, Li J, Zhang M Y, Shao J Y, Tang L and Cheng G J 2014 Direct laser writing of nanodiamond films from graphite under ambient conditions Sci. Rep. 4 6612
[20] Liao Y L, Yang Y L and Cheng G J 2012 Enhanced laser shock by an active liquid confinement—hydrogen peroxide J. Manuf. Sci. Eng. 134 034503
[21] Xiong Q L, Shimada T, Kitamura T and Li Z H 2020 Atomic investigation of effects of coating and confinement layer on laser shock peening Opt. Laser Technol. 131 106409
[22] Ren X D, Liu R, Zheng L M, Ren Y P, Hu Z Z and He H 2015 Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing Appl. Phys. Lett. 107 141907
[23] Ren X D, Yang H M, Zheng L M, Yuan S Q, Tang S X, Ren N F and Xu S D 2014 A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure Appl. Phys. Lett. 105 021908
[24] Qiu T Q and Tien C L 1992 Short-pulse laser heating on metals Int. J. Heat Mass Transfer 35 719–26
[25] Jiang L and Tsai H L 2005 Improved two-temperature model and its application in ultrashort laser heating of metal films J. Heat Transfer 127 1167–73
[26] Stafe M, Marcu A and Puscas N N 2014 Pulsed Laser Ablation of Solids: Basics, Theory and Applications (Berlin: Springer)
[27] Zhang Z Y, Nian Q, Doumanidis C C and Liao Y L 2018 First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing J. Appl. Phys. 123 054901
[28] MacFarlane J J, Golovkin I E and Woodruff P R 2006 HELIOS-CR–A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling J. Quant. Spectrosc. Radiat. Transfer 99 381–97
[29] Christensen B H, Vestentoft K and Balling P 2007 Short-pulse ablation rates and the two-temperature model Appl. Surf. Sci. 253 6347–52
[30] Peterson R R, MacFarlane J J and Moses G A 1995 BUCKY-1–A 1-D Radiation Hydrodynamics Code for Simulating Inertial Confinement Fusion High Energy Density Plasmas (Madison, MI: Fusion Technology Institute University of Wisconsin)
[31] Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion (Berlin: Springer)
[32] Stuart S J, Tutein A B and Harrison J A 2000 A reactive potential for hydrocarbons with intermolecular interactions J. Chem. Phys. 112 6472–86
[33] Li X W, Wang A Y and Lee K R 2018 Comparison of empirical potentials for calculating structural properties of amorphous carbon films by molecular dynamics simulation Comput. Mater. Sci. 151 246–54
[34] Todd B D and Daivis P J 2017 Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications (Cambridge: Cambridge University Press)
[35] Stukowski A 2009 Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool Modelling Simul. Mater. Sci. Eng. 18 015012
[36] Ren X D, Tang S X, Zheng L M, Yuan S Q, Ren N F, Yang H M, Wang Y, Zhou W F and Xu S D 2015 Direct transfer-adsorption: the new molecular dynamics transition mechanism of nano-diamond preparation by laser shock processing J. Cryst. Growth 421 1–7
[37] Sano T, Takahashi K, Sakata O, Okoshi M, Inoue N, Kobayashi K F and Hirose A 2009 Femtosecond laser-driven shock synthesis of hexagonal diamond from highly oriented pyrolytic graphite J. Phys.: Conf. Ser. 165 012019
[38] Maia F C B, Samad R E, Bettini J, Freitas R O, Junior N D V and Souza-Neto N M 2015 Synthesis of diamond-like phase from graphite by ultrafast laser driven dynamical compression Sci. Rep. 5 11812
[39] Kraus D et al 2017 Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions Nat. Astron. 1 606–11
[40] Amans D, Chenus A C, Ledoux G, Dujardin C, Reynaud C, Sublemontier O, Masenelli-Varlot K and Guillois O 2009 Nanodiamond synthesis by pulsed laser ablation in liquids Diamond Relat. Mater. 18 177–80
[41] Wang J B, Zhang C Y, Zhong X L and Yang G W 2002 Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid–solid interfacial reaction Chem. Phys. Lett. 361 86–90
[42] Gorrini F, Cazzanelli M, Bazzanella N, Edla R, Gemmi M, Cappello V, David J, Dorigoni C, Bifone A and Miotello A 2016 On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation Sci. Rep. 6 35244
[43] Zhang D S, Wu L C, Ueki M, Ito Y and Sugioka K 2020 Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application Int. J. Extreme Manuf. 2 045001
[44] Nakata Y, Hayashi E, Tsubakimoto K, Miyanaga N, Narazaki A, Shoji T and Tsuboi Y 2020 Nanodot array deposition via single shot laser interference pattern using laser-induced forward transfer Int. J. Extreme Manuf. 2 025101