• Chinese Optics Letters
  • Vol. 23, Issue 2, 022601 (2025)
Fangxing Zhang1,*, Shengnan Huangfu1, Shengqiang Ji1, Yanjie Bai1..., Xuanyi Zhang1,2, Zijing Cai1,2, Tinglan Chen1,2, Bo Ni1,2, Bowen Ruan1 and Jialüe Sun1,**|Show fewer author(s)
Author Affiliations
  • 1Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 2State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.3788/COL202523.022601 Cite this Article Set citation alerts
    Fangxing Zhang, Shengnan Huangfu, Shengqiang Ji, Yanjie Bai, Xuanyi Zhang, Zijing Cai, Tinglan Chen, Bo Ni, Bowen Ruan, Jialüe Sun, "High robustness, billion Q packaged microcavity devices for soliton microcombs," Chin. Opt. Lett. 23, 022601 (2025) Copy Citation Text show less
    References

    [1] S. B. Papp, K. Beha, P. Del’Haye et al. Microresonator frequency comb optical clock. Optica, 1, 10(2014).

    [2] P. Del’Haye, A. Coillet, T. Fortier et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photon., 10, 516(2016).

    [3] Z. L. Newman, V. Maurice, T. Drake et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680(2019).

    [4] L. Stern, J. R. Stone, S. Kang et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv., 6, eaax6230(2020).

    [5] P. Marin-Palomo, J. N. Kemal, M. Karpov et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

    [6] A. S. Raja, S. Lange, M. Karpov et al. Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nat. Commun., 12, 5867(2021).

    [7] M.-G. Suh, Q.-F. Yang, K. Y. Yang et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

    [8] M. J. Yu, Y. Okawachi, A. G. Griffith et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

    [9] Q.-F. Yang, B. Q. Shen, H. M. Wang et al. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965(2019).

    [10] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884(2018).

    [11] P. Trocha, M. Karpov, D. Ganin et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887(2018).

    [12] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [13] S. Y. Zhang, J. M. Silver, L. D. Bino et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206(2019).

    [14] V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A, 137, 393(1989).

    [15] T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [16] A. A. Savchenkov, A. B. Matsko, D. Strekalov et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett., 93, 243905(2004).

    [17] P. Del’Haye, A. Schliesser, O. Arcizet et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214(2007).

    [18] T. Herr, V. Brasch, J. D. Jost et al. Temporal solitons in optical microresonators. Nature Photon., 8, 145(2014).

    [19] B. Stern, X. C. Ji, Y. Okawachi et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).

    [20] B. Q. Shen, L. Chang, J. Q. Liu et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).

    [21] C. Xiang, J. Q. Liu, J. Guo et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99(2021).

    [22] H. W. Shu, L. Chang, Y. S. Tao et al. Microcomb-driven silicon photonic systems. Nature, 605, 457(2022).

    [23] W. Liang, D. Eliyahu, V. S. Ilchenko et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [24] S. Y. Zhang, J. M. Silver, X. B. Shang et al. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257(2019).

    [25] L. Yao, P. Liu, H.-J. Chen et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 9, 561(2022).

    [26] W. W. Cui, X. Liu, H. Zhou et al. Ultra-low time jitter transform-limited dissipative Kerr soliton microcomb. Opt. Express, 31, 37154(2023).

    [27] M. Zhang, W. L. Yang, K. Tian et al. In-fiber whispering-gallery-mode microsphere resonator-based integrated device. Opt. Lett., 43, 3961(2018).

    [28] J. M. Ward, P. Feron, S. N. Chormaic. A taper-fused microspherical laser source. IEEE Photon. Technol. Lett., 20, 392(2008).

    [29] D. Q. Yang, B. Duan, A. Q. Wang et al. Packaged microbubble resonator for versatile optical sensing. J. Lightwave Techol., 38, 4555(2020).

    [30] G. M. Zhao, Ş. K. Özdemir, T. Wang et al. Raman lasing and Fano line-shapes in a packaged fiber-coupled whispering-gallery-mode microresonator. Sci. Bull., 62, 875(2017).

    [31] Y. C. Dong, K. Y. Wang, X. Y. Jin. Packaged microsphere-taper coupling system with a high Q factor. Appl. Opt., 54, 277(2015).

    [32] V. S. Ilchenko, E. Dale, W. Liang et al. Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery-mode microresonator. Proc. SPIE, 7913, 79131G(2011).

    [33] P. Del’Haye, S. A. Diddams, S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Appl. Phys. Lett., 102, 221119(2013).

    [34] M. L. Gorodetsky, I. S. Grudinin. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B, 21, 697(2004).

    [35] N. Kondratiev, M. Gorodetsky. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A, 382, 2265(2018).

    [36] Y. M. Jung, G. Brambilla, D. J. Richardson. Polarization-maintaining optical microfiber. Opt. Lett., 35, 2034(2010).

    [37] X. Yi, Q.-F. Yang, K. Y. Yang et al. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett., 41, 2037(2016).

    [38] X. Yi, Q.-F. Yang, K. Y. Yang et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078(2015).

    [39] W. Liang, V. S. Ilchenko, D. Eliyahu et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371(2015).

    [40] J. K. Lim, A. A. Savchenkov, E. Dale et al. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nat. Commun., 8, 8(2017).

    [41] Y. Liu, Y. Yu, S. X. Yuan et al. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt. Lett., 41, 5078(2016).

    [42] W. J. Chen, Ş. K. Özdemir, G. M. Zhao et al. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192(2017).

    [43] J. Liao, L. Yang. Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci. Appl., 10, 278(2021).

    [44] J.-W. Meng, S.-J. Tang, J. L. Sun et al. Dissipative acousto-optic interactions in optical microcavities. Phys. Rev. Lett., 129, 073901(2022).

    [45] P. Peng, Y.-C. Liu, D. Xu et al. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances. Phys. Rev. Lett., 119, 233901(2018).

    [46] A. Ø. Svela, J. M. Silver, L. D. Bino et al. Coherent suppression of backscattering in optical microresonators. Light Sci. Appl., 9, 204(2020).

    Fangxing Zhang, Shengnan Huangfu, Shengqiang Ji, Yanjie Bai, Xuanyi Zhang, Zijing Cai, Tinglan Chen, Bo Ni, Bowen Ruan, Jialüe Sun, "High robustness, billion Q packaged microcavity devices for soliton microcombs," Chin. Opt. Lett. 23, 022601 (2025)
    Download Citation