• Laser & Optoelectronics Progress
  • Vol. 60, Issue 12, 1211001 (2023)
Jinlan Li1, Zhaoyang Xie1, Guoqi Liu2, and Jian Zou1,*
Author Affiliations
  • 1School of Information and Mathematics, Yangtze University, Jingzhou 434020, Hubei, China
  • 2College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, Henan, China
  • show less
    DOI: 10.3788/LOP221095 Cite this Article Set citation alerts
    Jinlan Li, Zhaoyang Xie, Guoqi Liu, Jian Zou. Diffusion Optical Tomography Based on Convex-Nonconvex Finite Element Total Variation Regularization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1211001 Copy Citation Text show less
    References

    [1] Douiri A, Schweiger M, Riley J et al. Local diffusion regularization method for optical tomography reconstruction by using robust statistics[J]. Optics Letters, 30, 2439-2441(2005).

    [2] Feng J C, Sun Q W, Li Z et al. Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography[J]. Journal of Biomedical Optics, 24, 051407(2018).

    [3] Chen X S, Wang X F, Wang Y Q. Diffuse optical tomography reconstruction algorithm based on multi-wavelet finite element method[J]. Laser Journal, 37, 48-51(2016).

    [4] Althobaiti M, Vavadi H, Zhu Q. Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix[J]. Journal of Biomedical Optics, 22, 026002(2017).

    [5] Chen C, Tian F H, Liu H L et al. Diffuse optical tomography enhanced by clustered sparsity for functional brain imaging[J]. IEEE Transactions on Medical Imaging, 33, 2323-2331(2014).

    [6] Tian W X, Yang D, Wei Z L et al. Study on the inverse problem of diffuse optical tomography based on improved stacked auto-encoder[J]. Journal of Biomedical Engineering, 38, 774-782(2021).

    [7] Kavuri V C, Lin Z J, Liu H L. Comparison of L1 and L2 regularizations in diffuse optical tomography[C], BTu3A.22(2012).

    [8] Douiri A, Schweiger M, Riley J et al. Anisotropic diffusion regularization methods for diffuse optical tomography using edge prior information[J]. Measurement Science and Technology, 18, 87-95(2007).

    [9] Kavuri V C, Lin Z J, Tian F H et al. Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography[J]. Biomedical Optics Express, 3, 943-957(2012).

    [10] Paulsen K D, Jiang H. Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization[J]. Applied Optics, 35, 3447-3458(1996).

    [11] Konovalov A B, Vlasov V V. Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections[J]. Proceedings of SPIE, 9917, 99170S(2016).

    [12] Lu W Q, Duan J M, Orive-Miguel D et al. Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography[J]. Biomedical Optics Express, 10, 2684-2707(2019).

    [13] Zhang X J, Bai M R, Ng M. Nonconvex-TV based image restoration with impulse noise removal[J]. SIAM Journal on Imaging Sciences, 10, 1627-1667(2017).

    [14] Okawa S, Hoshi Y, Yamada Y. Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization[J]. Biomedical Optics Express, 2, 3334-3348(2011).

    [15] Selesnick I. Sparse regularization via convex analysis[J]. IEEE Transactions on Signal Processing, 65, 4481-4494(2017).

    [16] Shen M R, Li J C, Zhang Y et al. Magnetic resonance image reconstruction algorithm via non-convex total variation regularization[J]. Journal of Computer Applications, 40, 2358-2364(2020).

    [17] Zhang F C, Lu W, Song L Y et al. Research on non-convex regularization bearing fault diagnosis method based on ADMM[J]. Mining & Processing Equipment, 49, 49-55(2021).

    [18] Selesnick I, Lanza A, Morigi S et al. Non-convex total variation regularization for convex denoising of signals[J]. Journal of Mathematical Imaging and Vision, 62, 825-841(2020).

    [19] Bi B. Research on reconstruction methods for diffuse optical tomography[D](2015).

    [20] Wang B Y, Chen W T, Ma W J et al. Reconstruction method of breast diffuse optical tomography based on non-negative-constraint L1-norm regularization[J]. Acta Optica Sinica, 36, 1117002(2016).

    [21] Selesnick I W, Bayram İ. Enhanced sparsity by non-separable regularization[J]. IEEE Transactions on Signal Processing, 64, 2298-2313(2016).

    [22] Guo J C, Chen Q H. Image denoising based on non-convex anisotropic total-variation regularization[J]. Signal Processing, 186, 108124(2021).

    [23] Liu J J, Ni A Q, Ni G X. A non-convex l1(l1-l2) model for image restoration with impulse noise[J]. Journal of Computational and Applied Mathematics, 378, 112934(2020).

    [24] Li J C, Li J L, Xie Z Y et al. Plug-and-play ADMM for MRI reconstruction with convex non-convex sparse regularization[J]. IEEE Access, 9, 148315-148324(2021).

    [25] Wang B Y, Li P. Understanding big data: irregular structure and graph signal[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 40, 112-116(2020).

    Jinlan Li, Zhaoyang Xie, Guoqi Liu, Jian Zou. Diffusion Optical Tomography Based on Convex-Nonconvex Finite Element Total Variation Regularization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1211001
    Download Citation