[1] Kavokin A, Shelykh I, Malpuech G. Optical Tamm states for the fabrication of polariton lasers[J]. Applied Physics Letters, 87, 261105(2005).
[2] Kaliteevski M, Iorsh I, Brand S et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Physical Review B, 76, 165415(2007).
[3] Liu Q N, Dai H X. Absorption properties of polarized light Tamm state in metal-photonic crystal-metal structure[J]. Laser Technology, 41, 205-209(2017).
[4] Lu Y Q, Cheng X Y, Xu M et al. Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit[J]. Acta Physica Sinica, 65, 204207(2016).
[5] Lu H, Gan X T, Jia B H et al. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons[J]. Optics Letters, 41, 4743-4746(2016).
[6] Vetrov S Y, Bikbaev R G, Timofeev I V. The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite[J]. Optics Communications, 395, 275-281(2017).
[7] Jiang Y, Zhang W L, Zhu Y Y. Optical Tamm state theory study on asymmetric DBR-metal-DBR structure[J]. Acta Physica Sinica, 62, 167303(2013).
[8] Gong Y K, Liu X M, Lu H et al. Perfect absorber supported by optical Tamm states in plasmonic waveguide[J]. Optics Express, 19, 18393-18398(2011).
[9] Xue C H, Wu F, Jiang H T et al. Wide-angle spectrally selective perfect absorber by utilizing dispersionless tamm plasmon polaritons[J]. Scientific Reports, 6, 39418(2016).
[10] Han J, Jiang J J, Wu T et al. Multi-channel high-performance absorber based on SiC-photonic crystal heterostructure-SiC structure[J]. Nanomaterials, 12, 289(2022).
[11] Yang C Y, Shen W D, Zhang Y G et al. Multi-narrowband absorber based on subwavelength grating structure[J]. Optics Communications, 331, 310-315(2014).
[12] Bikbaev R G, Vetrov S Y, Timofeev I V. Epsilon-near-zero absorber by Tamm plasmon polariton[J]. Photonics, 6, 28(2019).
[13] Liu J T, Liu N H, Li J et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 101, 052104(2012).
[14] Wang S, Li G M, Zou Y H. Tunable terahertz absorption with optical tamm state in the graphene-Bragg reflector configuration[J]. Advances in Condensed Matter Physics, 2018, 3063161(2018).
[15] Ling K, Jiang L, Yao Z H et al. Analysis of filtering characteristics of graphene three-defect photonic crystal[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 46, 10-17(2023).
[16] Chen S H. Dual-mode near-infrared light tunable absorber based on graphene by optical Tamm state and microcavity[J]. Optics Communications, 492, 126962(2021).
[17] Yang S D, Li P L, Zhang R Y. Optical Tamm states in metal-distributed Bragg reflection-metal structure with graphene[J]. Chinese Journal of Lasers, 48, 1613001(2021).
[18] Wang X, Jiang X, You Q et al. Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene[J]. Photonics Research, 5, 536-542(2017).
[19] Wu Y X, Wu W Q, Hu J S. Tunable perfect dual-narrowband absorber based on graphene-photonic crystal heterostructure[J]. Results in Physics, 34, 105234(2022).
[20] Jiang X Q, Liu Z B, Tian J G. The optical properties of Graphene and its application[J]. Progress in Physics, 37, 22-36(2017).
[21] Li P L, Gao H, Luan K Z et al. Weak coupling properties of optical Tamm state in metal-DBR-metal structure[J]. Spectroscopy and Spectral Analysis, 40, 650-655(2020).
[22] Wu F, Wu X H, Xiao S Y et al. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state[J]. Optics Express, 29, 23976-23987(2021).