• Optics and Precision Engineering
  • Vol. 27, Issue 9, 1919 (2019)
CHEN Li-guo*, WANG Zhao-long, and BIAN Xiong-heng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20192709.1919 Cite this Article
    CHEN Li-guo, WANG Zhao-long, BIAN Xiong-heng. Micro-droplet split digital microfluidic device with fan-shaped electrode[J]. Optics and Precision Engineering, 2019, 27(9): 1919 Copy Citation Text show less
    References

    [1] YE X Y, XU W X, XIE SH, et al.. Development of a body fluids pretreatment instrument for aerospace medicine[J]. Opt. Precision Eng., 2017, 25(8): 2083-2089. (in Chinese)

    [2] XU K X, CHEN X L, LI D CH, et al.. Minimally invasive continuous blood glucose monitor based on microfluidic and enzyme colorimetric technologies[J]. Opt. Precision Eng., 2018, 26(11): 2615-2622. (in Chinese)

    [3] MARK D, HAEBERLE S, ROTH G, et al.. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications [J]. Chemical Society Reviews, 2010, 39(3): 1153-1182.

    [4] FOUILLET Y, JARY D, CHABROL C, et al.. Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems[J]. Microfluidics and Nanofluidics, 2008, 4(3): 159-165.

    [5] JEBRAIL M J, BARTSCH M S, PATEL K D. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine[J]. Lab on a Chip, 2012, 12(14): 2452-2463.

    [6] TEH S Y, LIN R, HUNG L H, et al.. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198-220.

    [7] CHOI K, NG A H C, FOBEL R, et al.. Digital microfluidics[J]. Annual Review of Analytical Chemistry, 2012, 5(8): 413-440.

    [8] ROSE D. Microdispensing technologies in drug discovery[J]. Drug Discovery Today, 1999, 4(9): 411-419.

    [9] REN H, FAIR R B, POLLACK M G. Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering[J]. Sensors and Actuators B: Chemical, 2004, 98(2/3): 319-327.

    [10] NIKAPITIYA N Y J B, NAHAR M M, MOON H. Accurate, consistent, and fast droplet splitting and dispensing in electrowetting on dielectric digital microfluidics[J]. Micro and Nano Systems Letters, 2017, 5(1): 1-10.

    [11] DONG C, JIA Y W, GAO J, et al.. A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips[J]. Lab on a Chip, 2017, 17(5): 896-904.

    [12] SONG J H, EVANS R, LIN Y Y, et al.. A scaling model for electrowetting-on-dielectric microfluidic actuators[J]. Microfluidics and Nanofluidics, 2009, 7(1): 75-89.

    [13] CHO S K, MOON H, KIM C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits[J]. Journal of Microelectromechanical Systems, 2003, 12(1): 70-80.

    [14] BIAN X H, CHEN L G, XU X W. A novel crescent electrode for droplet splitting in digital microfluidic[C]. 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 2015: 2036-2039.

    [15] CHEN J F. Study of Novel Digital Microfluidic Chips Based on EWOD[D]. Shanghai: Fudan University,2014. (in Chinese)

    CLP Journals

    [1] YUAN Hong-wei, RAO Sheng-long, WU Dong, LI Jia-wen, HU Yan-lei. Fabrication and rotation driving of movable microstructures based on femtosecond laser[J]. Optics and Precision Engineering, 2020, 28(3): 584

    CHEN Li-guo, WANG Zhao-long, BIAN Xiong-heng. Micro-droplet split digital microfluidic device with fan-shaped electrode[J]. Optics and Precision Engineering, 2019, 27(9): 1919
    Download Citation