• Laser & Optoelectronics Progress
  • Vol. 57, Issue 3, 031601 (2020)
Chaosu Wang1, Dafei Jiang1, and Xiaowei Jiang1,2,*
Author Affiliations
  • 1College of Information Engineering, Quzhou College of Technology, Quzhou, Zhejiang 324000, China
  • 2Key Laboratory of Opto-electronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP57.031601 Cite this Article Set citation alerts
    Chaosu Wang, Dafei Jiang, Xiaowei Jiang. Polarization Independent High Absorption Efficiency Wide Absorption Bandwidth Metamaterial Absorber[J]. Laser & Optoelectronics Progress, 2020, 57(3): 031601 Copy Citation Text show less
    References

    [1] Zhou Y G, Li M Q, Pan X. Broadband absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 54, 121602(2017).

    [2] Dash R K, Sahu S K, Mishra C S et al. Realization of ‘non-linear invisibility cloak’ using meta-material[J]. Optik, 127, 9635-9639(2016).

    [3] Alù A, Silveirinha M G, Salandrino A et al. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern[J]. Physical Review B, 75, 155410(2007).

    [4] Chen H T, Padilla W J, Cich M J et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 3, 148-151(2009).

    [5] Ebrahimi A, Withayachumnankul W, Al-Sarawi S et al. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization[J]. IEEE Sensors Journal, 14, 1345-1351(2014).

    [6] Smith D R, Pendry J B. Homogenization of metamaterials by field averaging (invited paper)[J]. Journal of the Optical Society of America B, 23, 391-403(2006).

    [7] Shrekenhamer D, Xu W R, Venkatesh S et al. Experimental realization of a metamaterial detector focal plane array[J]. Physical Review Letters, 109, 177401(2012).

    [8] Dincer F, Akgol O, Karaaslan M et al. Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime[J]. Progress in Electromagnetics Research, 144, 93-101(2014).

    [9] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [10] Su Z X, Yin J B, Zhao X P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures[J]. Optics Express, 23, 1679-1690(2015).

    [11] Yao G, Ling F R, Yue J et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 24, 1518-1527(2016).

    [12] Hoa N T Q, Lam P H, Tung P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 4600208(2019).

    [13] Xiong H, Wu Y B, Dong J et al. Ultra-thin and broadband tunable metamaterial graphene absorber[J]. Optics Express, 26, 1681-1688(2018).

    [14] Shi Y, Li Y C, Hao T et al. A design of ultra-broadband metamaterial absorber[J]. Waves in Random and Complex Media, 27, 381-391(2017).

    [15] He S L, Chen T. Broadband THz absorbers with graphene-based anisotropic metamaterial films[J]. IEEE Transactions on Terahertz Science and Technology, 3, 757-763(2013).

    [16] Cui H N. Graphene based photonic crystal slow light waveguide[D]. Hangzhou: Zhejiang University, 17-20(2017).

    [17] Jia X Y. Theoretical research of slow-light based on surface plasmon polaritons[D]. Beijing: Beijing University of Posts and Telecommunications, 18-35(2015).

    [18] Gao J, Sang T, Li J L et al. Double-channel absorption enhancement of graphene using narrow groove metal grating[J]. Acta Physica Sinica, 67, 184210(2018).

    [19] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [20] Zhou Z H, Chen K, Zhao J M et al. Metasurface Salisbury screen: achieving ultra-wideband microwave absorption[J]. Optics Express, 25, 30241-30252(2017).

    [21] Rufangura P, Sabah C. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications[J]. Journal of Alloys and Compounds, 671, 43-50(2016).

    [22] Rufangura P, Sabah C. Polarization angle insensitive dual-band perfect metamaterial absorber for solar cell applications[J]. Physica Status Solidi (c), 12, 1241-1245(2015).

    Chaosu Wang, Dafei Jiang, Xiaowei Jiang. Polarization Independent High Absorption Efficiency Wide Absorption Bandwidth Metamaterial Absorber[J]. Laser & Optoelectronics Progress, 2020, 57(3): 031601
    Download Citation